这是一个非常简单的遗传算法源代码,是由Denis Cormier (North Carolina State University)开发的,
Sita S.Raghavan (University of North Carolina at Charlotte)修正。 代码保证尽可能少,实际上也不必查错。
对一特定的应用修正此代码,用户只需改变常数的定义并且定义“评价函数”即可。 注意代码的设计是求最大值,其中的目标函数只能取正值;且函数值和个体的适应值之间没有区别。
该系统使用比率选择、精华模型、单点杂交和均匀变异。如果用 Gaussian变异替换均匀变异,可能得到更好的效果。
代码没有任何图形,甚至也没有屏幕输出,主要是保证在平台之间的高可移植性。 读者可以从ftp.uncc.edu, 目录 coe/evol中的文件prog.c中获得。 要求输入的文件应该命名为‘gadata.txt’;系统产生的输出文件为‘galog.txt’。
输入的文件由几行组成:数目对应于变量数。且每一行提供次序——对应于变量的上下界。 如第一行为第一个变量提供上下界,第二行为第二个变量提供上下界,等等。 */
#include /* Change any of these parameters to match your needs */ //请根据你的需要来修改以下参数 #define POPSIZE 50 /* population size 种群大小*/ #define MAXGENS 1000 /* max. number of generations 最大基因个数*/ const int NVARS = 3; /* no. of problem variables 问题变量的个数*/ #define PXOVER 0.8 /* probability of crossover 杂交概率*/ #define PMUTATION 0.15 /* probability of mutation 变异概率*/ #define TRUE 1 #define FALSE 0 int generation; /* current generation no. 当前基因个数*/ int cur_best; /* best individual 最优个体*/ FILE *galog; /* an output file 输出文件指针*/ struct genotype /* genotype (GT), a member of the population 种群的一个基因的结构体类型*/ { double gene[NVARS]; /* a string of variables 变量*/ double fitness; /* GT's fitness 基因的适应度*/ double upper[NVARS]; /* GT's variables upper bound 基因变量的上界*/ double lower[NVARS]; /* GT's variables lower bound 基因变量的下界*/ double rfitness; /* relative fitness 比较适应度*/ double cfitness; /* cumulative fitness 积累适应度*/ }; struct genotype population[POPSIZE+1]; /* population 种群*/ struct genotype newpopulation[POPSIZE+1]; /* new population; 新种群*/ /* replaces the old generation */ //取代旧的基因 /* Declaration of procedures used by this genetic algorithm */ //以下是一些函数声明 void initialize(void); double randval(double, double); void evaluate(void); void keep_the_best(void); void elitist(void); void select(void); void crossover(void); void Xover(int,int); void swap(double *, double *); void mutate(void); void report(void); /***************************************************************/ /* Initialization function: Initializes the values of genes */ /* within the variables bounds. It also initializes (to zero) */ /* all fitness values for each member of the population. It */ /* reads upper and lower bounds of each variable from the */ /* input file `gadata.txt'. It randomly generates values */ /* between these bounds for each gene of each genotype in the */ /* population. The format of the input file `gadata.txt' is */ /* var1_lower_bound var1_upper bound */ /* var2_lower_bound var2_upper bound ... */ /***************************************************************/ void initialize(void) { FILE *infile; int i, j; double lbound, ubound; if ((infile = fopen(\"gadata.txt\ { fprintf(galog,\"\\nCannot open input file!\\n\"); exit(1); } /* initialize variables within the bounds */ //把输入文件的变量界限输入到基因结构体中 for (i = 0; i < NVARS; i++) { fscanf(infile, \"%lf\ fscanf(infile, \"%lf\ for (j = 0; j < POPSIZE; j++) { population[j].fitness = 0; population[j].rfitness = 0; population[j].cfitness = 0; population[j].lower[i] = lbound; population[j].upper[i]= ubound; population[j].gene[i] = randval(population[j].lower[i], population[j].upper[i]); } } fclose(infile); } /***********************************************************/ /* Random value generator: Generates a value within bounds */ /***********************************************************/ //随机数产生函数 double randval(double low, double high) { double val; val = ((double)(rand()%1000)/1000.0)*(high - low) + low; return(val); } /*************************************************************/ /* Evaluation function: This takes a user defined function. */ /* Each time this is changed, the code has to be recompiled. */ /* The current function is: x[1]^2-x[1]*x[2]+x[3] */ /*************************************************************/ //评价函数,可以由用户自定义,该函数取得每个基因的适应度 void evaluate(void) { int mem; int i; double x[NVARS+1]; for (mem = 0; mem < POPSIZE; mem++) { for (i = 0; i < NVARS; i++) x[i+1] = population[mem].gene[i]; population[mem].fitness = (x[1]*x[1]) - (x[1]*x[2]) + x[3]; } } /***************************************************************/ /* Keep_the_best function: This function keeps track of the */ /* best member of the population. Note that the last entry in */ /* the array Population holds a copy of the best individual */ /***************************************************************/ //保存每次遗传后的最佳基因 void keep_the_best() { int mem; int i; cur_best = 0; /* stores the index of the best individual */ //保存最佳个体的索引 for (mem = 0; mem < POPSIZE; mem++) { if (population[mem].fitness > population[POPSIZE].fitness) { cur_best = mem; population[POPSIZE].fitness = population[mem].fitness; } } /* once the best member in the population is found, copy the genes */ //一旦找到种群的最佳个体,就拷贝他的基因 for (i = 0; i < NVARS; i++) population[POPSIZE].gene[i] = population[cur_best].gene[i]; } /****************************************************************/ /* Elitist function: The best member of the previous generation */ /* is stored as the last in the array. If the best member of */ /* the current generation is worse then the best member of the */ /* previous generation, the latter one would replace the worst */ /* member of the current population */ /****************************************************************/ //搜寻杰出个体函数:找出最好和最坏的个体。 //如果某代的最好个体比前一代的最好个体要坏,那么后者将会取代当前种群的最坏个体 void elitist() { int i; double best, worst; /* best and worst fitness values 最好和最坏个体的适应度值*/ int best_mem, worst_mem; /* indexes of the best and worst member 最好和最坏个体的索引*/ best = population[0].fitness; worst = population[0].fitness; for (i = 0; i < POPSIZE - 1; ++i) { if(population[i].fitness > population[i+1].fitness) { if (population[i].fitness >= best) { best = population[i].fitness; best_mem = i; } if (population[i+1].fitness <= worst) { worst = population[i+1].fitness; worst_mem = i + 1; } } else { if (population[i].fitness <= worst) { worst = population[i].fitness; worst_mem = i; } if (population[i+1].fitness >= best) { best = population[i+1].fitness; best_mem = i + 1; } } } /* if best individual from the new population is better than */ /* the best individual from the previous population, then */ /* copy the best from the new population; else replace the */ /* worst individual from the current population with the */ /* best one from the previous generation */ //如果新种群中的最好个体比前一代的最好个体要强的话,那么就把新种群的最好个体拷贝出来。 //否则就用前一代的最好个体取代这次的最坏个体 if (best >= population[POPSIZE].fitness) { for (i = 0; i < NVARS; i++) population[POPSIZE].gene[i] = population[best_mem].gene[i]; population[POPSIZE].fitness = population[best_mem].fitness; } else { for (i = 0; i < NVARS; i++) population[worst_mem].gene[i] = population[POPSIZE].gene[i]; population[worst_mem].fitness = population[POPSIZE].fitness; } } /**************************************************************/ /* Selection function: Standard proportional selection for */ /* maximization problems incorporating elitist model - makes */ /* sure that the best member survives */ /**************************************************************/ //选择函数:用于最大化合并杰出模型的标准比例选择,保证最优秀的个体得以生存 void select(void) { int mem, j, i; double sum = 0; double p; /* find total fitness of the population */ //找出种群的适应度之和 for (mem = 0; mem < POPSIZE; mem++) { sum += population[mem].fitness; } /* calculate relative fitness */ //计算相对适应度 for (mem = 0; mem < POPSIZE; mem++) { population[mem].rfitness = population[mem].fitness/sum; } population[0].cfitness = population[0].rfitness; /* calculate cumulative fitness */ //计算累加适应度 for (mem = 1; mem < POPSIZE; mem++) { population[mem].cfitness = population[mem-1].cfitness + population[mem].rfitness; } /* finally select survivors using cumulative fitness. */ //用累加适应度作出选择 for (i = 0; i < POPSIZE; i++) { p = rand()%1000/1000.0; if (p < population[0].cfitness) newpopulation[i] = population[0]; else { for (j = 0; j < POPSIZE;j++) if (p >= population[j].cfitness && p /***************************************************************/ //杂交函数:选择两个个体来杂交,这里用单点杂交 void crossover(void) { int mem, one; int first = 0; /* count of the number of members chosen */ double x; for (mem = 0; mem < POPSIZE; ++mem) { x = rand()%1000/1000.0; if (x < PXOVER) { ++first; if (first % 2 == 0) Xover(one, mem); else one = mem; } } } /**************************************************************/ /* Crossover: performs crossover of the two selected parents. */ /**************************************************************/ void Xover(int one, int two) { int i; int point; /* crossover point */ /* select crossover point */ if(NVARS > 1) { if(NVARS == 2) point = 1; else point = (rand() % (NVARS - 1)) + 1; for (i = 0; i < point; i++) swap(&population[one].gene[i], &population[two].gene[i]); } } /*************************************************************/ /* Swap: A swap procedure that helps in swapping 2 variables */ /*************************************************************/ void swap(double *x, double *y) { double temp; temp = *x; *x = *y; *y = temp; } /**************************************************************/ /* Mutation: Random uniform mutation. A variable selected for */ /* mutation is replaced by a random value between lower and */ /* upper bounds of this variable */ /**************************************************************/ //变异函数:被该函数选中后会使得某一变量被一个随机的值所取代 void mutate(void) { int i, j; double lbound, hbound; double x; for (i = 0; i < POPSIZE; i++) for (j = 0; j < NVARS; j++) { x = rand()%1000/1000.0; if (x < PMUTATION) { /* find the bounds on the variable to be mutated 确定*/ lbound = population[i].lower[j]; hbound = population[i].upper[j]; population[i].gene[j] = randval(lbound, hbound); } } } /***************************************************************/ /* Report function: Reports progress of the simulation. Data */ /* dumped into the output file are separated by commas */ /***************************************************************/ void report(void) { int i; double best_val; /* best population fitness 最佳种群适应度*/ double avg; /* avg population fitness 平均种群适应度*/ double stddev; /* std. deviation of population fitness */ double sum_square; /* sum of square for std. calc 各个个体平方之和*/ double square_sum; /* square of sum for std. calc 平均值的平方乘个数*/ double sum; /* total population fitness 所有种群适应度之和*/ sum = 0.0; sum_square = 0.0; for (i = 0; i < POPSIZE; i++) { sum += population[i].fitness; sum_square += population[i].fitness * population[i].fitness; } avg = sum/(double)POPSIZE; square_sum = avg * avg * POPSIZE; stddev = sqrt((sum_square - square_sum)/(POPSIZE - 1)); best_val = population[POPSIZE].fitness; fprintf(galog, \"\\n%5d, %6.3f, %6.3f, %6.3f \\n\\n\ best_val, avg, stddev); } /**************************************************************/ /* Main function: Each generation involves selecting the best */ /* members, performing crossover & mutation and then */ /* evaluating the resulting population, until the terminating */ /* condition is satisfied */ /**************************************************************/ void main(void) { int i; if ((galog = fopen(\"galog.txt\ { exit(1); } generation = 0; fprintf(galog, \"\\n generation best average standard \\n\"); fprintf(galog, \" number value fitness deviation \\n\"); initialize(); evaluate(); keep_the_best(); while(generation 因篇幅问题不能全部显示,请点此查看更多更全内容