在前面几篇,我们介绍了网卡和集线器两类基础网络设备,也对小型等网以及纯集线器设备的小型C/S模式局域网的组建、配置方法作了详细介绍。但是在当前,在企业网络中所采用的网络结构通常都远比这两类网络复杂,主要区别是所采用的网络设备也不再是单纯的集线器那么简单,而是添加了更具智能、功能更强在的其它网络设备,如交换机、路由器、网关、防火墙等,特别是交换机,它几乎成为当今企业网络中不可或缺的基本网络设备。了解和掌握交换机的有关知识及技能已成为一个网管人员水平高低的基本象征,所以自本篇开始将花四篇以上篇幅介绍与交换机有关的基础知识,使大家对交换机的基础知识以及应用有一个基础、全面的掌握。
一、交换机基础
集线器作为第一类广泛应用的网络集线设备,当时在各大局域网中应用非常广泛。但随着网络传输媒体类型的日益丰富,图形、图像及各种流媒体等多媒体内容的出现,人们对高网络数据传输速度和传输性能的要求日益提高。集线器由于它的共享介质传输、单工数据操作和广播数据发送方式等都先天决定了很难满足用户的上述速度和性能要求。在用户的需求下、在全球各大网络设备开发商的努力下,一种更新、更实用的集线设备--交换机出现了。交换机完全克服了集线器的上述种种不足之处,所以在短时间内得到业界广泛的认可和应用。交换机技术也得到了飞速发展,数据传输速度的发展也是一日千里。目前最快的以太网交换机端口带宽可达到10Gbps,千兆(G位)级的交换机在各企业骨干网络中早已得到广泛应用。
交换机的英文名称之为“Switch”,它是集线器的升级换代产品,从外观上来看的话,它与集线器基本上没有多大区别,都是带有多个端口的长方形盒状体。交换机是按照通信两端传输信息的需要,用人工或设备自动完成的方法把要传输的信息送到符合要求的相应路由上的技术统称。广义的交换机就是一种在通信系统中完成信息交换功能的设备。
“交换”和“交换机”最早起源于电话通讯系统(PSTN)。我们以前经常在电影或电视中看到一些老的影片时常看到有人在电话机旁狂摇几下(注意不是拨号),然后就说:跟我接XXX,话务接线员接到要求后就会把相应端线头插在要接端子上,即可通话。其实这就是最原始的电话交换机系统,只不过它是一种人工电话交换系统,不是自动的,也不是我们今
天要谈的计算机交换机,但是我们现在要讲的计算机交换机也就是在这个电话交换机技术上发展而来。
在计算机网络系统中,交换概念的提出是相对于共享工作模式的改进。我们知道集线器(HUB)是一种共享介质的网络设备,而且HUB本身不能识别目的地址,是采用广播方式向所有节点发送。即当同一局域网内的A主机给B主机传输数据时,数据包在以HUB为架构的网络上是以广播方式传输的,对网络上所有节点同时发送同一信息,然后再由每一台终端通过验证数据包头的地址信息来确定是否接收。在这种方式下我们知道很容易造成网络堵塞,因为其实接收数据的一般来说只有一个终端节点,而现在对所有节点都发送,那么绝大部分数据流量是无效的,这样就造成整个网络数据传输效率相当低。另一方面由于所发送的数据包每个节点都能侦听到,那显然就不会很安全了,容易出现一些不安全因素。
交换机拥有一条很高带宽的背部总线和内部交换矩阵。交换机的所有的端口都挂接在这条背部总线上。控制电路收到数据包以后,处理端口会查找内存中的MAC地址(网卡的硬件地址)对照表以确定目的MAC的NIC(网卡)挂接在哪个端口上,通过内部交换矩阵直接将数据迅速包传送到目的节点,而不是所有节点,目的MAC若不存在才广播到所有的端口。这种方式我们可以明显地看出一方面效率高,不会浪费网络资源,只是对目的地址发送数据,一般来说不易产生网络堵塞;另一个方面数据传输安全,因为它不是对所有节点都同时发送,发送数据时其它节点很难侦听到所发送的信息。这也是交换机为什么会很快取代集线器的重要原因之一。
交换机还有一个重要特点就是它不是像集线器一样每个端口共享带宽,它的每一端口都是独享交换机的一部分总带宽,这样在速率上对于每个端口来说有了根本的保障。另外,使用交换机也可以把网络“分段”,通过对照地址表,交换机只允许必要的网络流量通过交换机,这就是后面将要介绍的VLAN(虚拟局域网)。通过交换机的过滤和转发,可以有效的隔离广播风暴,减少误包和错包的出现,避免共享冲突。这样交换机就可以在同一时刻可进行多个节点对之间的数据传输,每一节点都可视为独立的网段,连接在其上的网络设备独自享有固定的一部分带宽,无须同其他设备竞争使用。如当节点A向节点D发送数据时,节点B可同时向节点C发送数据,而且这两个传输都享有带宽,都有着自己的虚拟连接。打个比方就是,如果现在使用的是10Mbps 8端口以太网交换机,因每个端口都可以同时工作,所以在数据流量较大时,那它的总流量可达到8*10Mbps=80Mbps,而使用10Mbps的共享式HUB
时,因为它是属于共享带宽式的,所以同一时刻只能允许一个端口进行通信,那数据流量再忙HUB的总流通量也不会超出10Mbps。如果是16端口、24端口的更是明显了!
交换机的主要功能包括物理编址、网络拓扑结构、错误校验、帧序列以及流量控制。目前一些高档交换机还具备了一些新的功能,如对VLAN(虚拟局域网)的支持、对链路汇聚的支持,甚至有的还具有路由和防火墙的功能。
交换机除了能够连接同种类型的网络之外,还可以在不同类型的网络(如以太网和快速以太网)之间起到互连作用。如今许多交换机都能够提供支持快速以太网或FDDI等的高速连接端口,用于连接网络中的其它交换机或者为带宽占用量大的关键服务器提供附加带宽。
一般来说,交换机的每个端口都用来连接一个独立的网段,但是有时为了提供更快的接入速度,我们可以把一些重要的网络计算机直接连接到交换机的端口上。这样,网络的关键服务器和重要用户就拥有更快的接入速度,支持更大的信息流量。
总之,交换机是一种基于MAC地址识别,能完成封装转发数据包功能的网络设备。交换机对于因第一次发送到目的地址不成功的数据包会再次对所有节点同时发送,企图找到这个目的MAC地址,找到后就会把这个地址重新加入到自己的MAC地址列表中,这样下次再发送到这个节点时就不会发错。交换机的这种功能就称之为“MAC地址学习”功能。
二、交换机与集线器的区别
上面我们讲到,交换机最开始是为了解决集线器共享传输介质,端口带宽过窄,容易产生广播风暴而产生,最初的交换机是工作在OSI/RM开放体系结构中的第二层,所以也称之为第二层交换机(这一点我们会在下篇介绍交换机的分类时继续介绍)。本节要介绍的是交换机与集线器之间到底有哪些区别,换句话说也就是交换机到底有哪些优点,理解了它们之间的区别后就能正确理解当前局域网为什么广泛使用交换机,而非集线器,也便于我们在日后的网络设备选购中正确地选择。
交换机与集线器的区别主要体现在如下几个方面:
(1)在OSI/RM中的工作层次不同
交换机和集线器在OSI/RM开放体系模型中对应的层次就不一样,集线器是同时工作在第一层(物理层)和第二层(数据链路层),而交换机至少是工作在第二层,更高级的交换机可以工作在第三层(网络层)和第四层(传输层)。
(2)交换机的数据传输方式不同
集线器的数据传输方式是广播(broadcast)方式,而交换机的数据传输是有目的的,数据只对目的节点发送,只是在自己的MAC地址表中找不到的情况下第一次使用广播方式发送,然后因为交换机具有MAC地址学习功能,第二次以后就不再是广播发送了,又是有目的的发送。这样的好处是数据传输效率提高,不会出现广播风暴,在安全性方面也不会出现其它节点侦听的现象。具体在前面已作分析,在此不再赘述。
(3)带宽占用方式不同
在带宽占用方面,集线器所有端口是共享集线器的总带宽,而交换机的每个端口都具有自己的带宽,这样就交换机实际上每个端口的带宽比集线器端口可用带宽要高许多,也就决定了交换机的传输速度比集线器要快许多。
(4)传输模式不同
集线器只能采用半双工方式进行传输的,因为集线器是共享传输介质的,这样在上行通道上集线器一次只能传输一个任务,要么是接收数据,要么是发送数据。而交换机则不一样,它是采用全双工方式来传输数据的,因此在同一时刻可以同时进行数据的接收和发送,这不但令数据的传输速度大大加快,而且在整个系统的吞吐量方面交换机比集线器至少要快一倍以上,因为它可以接收和发送同时进行,实际上还远不止一倍,因为端口带宽一般来说交换机比集线器也要宽许多倍。
三、交换机的工作原理
交换机和集线器在外型上非常相似,而且都遵循IEEE802.3及其扩展标准,介质存取方式也均为CSMA/CD,但是它们之间在工作原理上还是有着根本的区别。简单地说,由交换机构建的网络称之为交换式网络,每个端口都能独享带宽,所有端口都能够同时进行通讯,并且能够在全双工模式下提供双倍的传输速率。而集线器构建的网络称之为共享式网络,在
同一时刻只能有两个端口(接收数据的端口和发送数据的端口)进行通讯,所有的端口分享固有的带宽。下面简单以图示方式介绍如下。
1、“共享”与“交换”数据传输技术
要明白交换机的优点我们首先就必须明白交换机的基本工作原理,而交换机的工作原理其实最根本的是要理解“共享”(Share)和“交换”(Switch)这两个概念。集线器是采用共享方式进行数据传输的,而我们在这里要讲的交换机工作原理则是采用“交换”方式进行数据传输的。我们可以把“共享”和“交换”理解成公路。“共享”方式就是来回车辆共用一个车道的单车道公路,而“交换”方式则是来回车辆各用一个车道的双车道公路,“共享”和“交换”这两种数据传输方式的示意图分别如图1左、右图所示。
图1
从我们平常生活中就可感觉到这两种方式的不同之处,明显可以感受到双车道的交换方式的优越性。因为双车道来回的车辆可以在不同的车道上单独行走,一般来说如果不出现意外的外是不可能出现大塞车现象(当然也有可能,那就车辆太多,速度太慢情况下),而单车道就象我们过单车道的桥一样,来回的车辆每次只能允许一个方向的车辆经过这个桥,这样就很容易出现塞车现象。
交换机进行数据交换的原理就是在这样的背景下产生,它解决了集线器那种共享单车道容易出现“塞车”现象。在交换机技术上把这种“独享”道宽(网络上称之为“带宽”)情况称之为“交换”,这种网络环境称为“交换式网络”,交换式网络必须采用交换机(Switch)来实现。从图1右图可以知道交换式网络可以是“全双工”(Full Duplex)状态,即可以同时接收和发送数据,数据流是双向的。而集线器的“共享”方式的网络就称之为“共享式网络”,共享式网络采用集线器(集线器)作为网络连接设备。显然,共享网络
的效率非常低,在任一时刻只能有一个方向的数据流,即处于“半双工”(Half Duplex)模式,也称为“单工”模式。
另外一方面,由于单车道共享方式中来回车辆共用一个车道,也就是每次只能过一个方向的车,这样车辆一多,速度肯定会降下来,效率也就跟着下降。共享式网络的通信也与共享车道情况类似,它的效率在数据流量大的时候效率也肯定会降低,因为同一时刻只能进行单一数据传输任务。还可能造成数据碰撞现象,就像我们在单车道上经常看到撞车现象一样,因为车流量一大,就很难保证每个车辆的司机都那么遵守交通规则,容易出现数据碰撞、争抢车道的现象。而交换式的数据交换方式出现这种情况就少许多,因为各自都有自己的信道,各行其道基本上是不太可能发生争抢信道的现象。但也有例外,那就是数据流量增大,而网络速度和带宽没有得到保证时才会在同一信道上出现碰撞现象,就像我们在双车道或多车道也可能发生撞车现象一样。解决这一现象的方法有两种,一种是增加车道,另一种方法就是提高车速,很显然增加车道这一方法是最基本的,但它不是最终的方法,因为车道的数量肯定有限,如果所有车辆的速度上不去,那还是会效率低的,对于一些心急的司机来说还是会撞车的。第二种方法是一种比较好的方法,提速有助于车辆正常有序地快速流动,这就是为什么高速公路反而出现撞车的现象比普通公路上少许多的原因。计算机网络也一样,虽然我们的交换机能提供全双工方式进行数据传输,但是如果网络带宽不宽、速度不快,每传输一个数据包都有要花费大量的时间,则信道再多也无济于事,网络传输的效率还是高不起来的,况且网络上的信道也是非常有限的,这要决定于带宽。目前最快的以太网交换机带宽可达到10Gbps。
2。 数据传递的方式
通过前面的学习我们已经知道集线器的数据包传输方式是广播方式,如图2所示。由于集线器中只能同时存在一个广播,所以同一时刻只能有1个数据包在传输,信道的利用率较低。
图2
而对于交换机而言,它能够“认识”连接到自己身上的每一台电脑,凭什么认识呢?就是凭每块网卡物理地址,俗称“MAC地址”。交换机还具有MAC地址学习功能,它会把连接到自己身上的MAC地址记住,形成一个节点与MAC地址对应表。凭这样一张表,它就不必再进行广播了,从一个端口发过来的数据,其中会含有目的地的MAC地址,交换机在保存在自己缓存中的MAC地址表里寻找与这个数据包中包含的目的MAC地址对应的节点,找到以后,便在这两个节点间架起了一条临时性的专用数据传输通道,这两个节点便可以不受干扰地进行通信了。要注意交换机档次越低,交换机的缓存就越小,也就是说为保存MAC地址所准备的空间也就越小,对应的就是它能记住的MAC地址数也就越少。通常一台交换机都具有1024个MAC地址记忆空间,都能满足实际需求。从上面的分析来看我们知道交换机所进行的数据传递是有明确的方向的,而不是乱传递,而不是集线器的广播方式,这种传递示意图如图3所示。同时由于交换机可以进行全双工传输,所以交换机可以同时在多对节点之间建立临时专用通道,形成了立体交叉的数据传输通道结构。
图3
交换机的数据传递工作原理可以简单地这样来说明:
当交换机从某一节点收到一个以太网帧后,将立即在其内存中的地址表(端口号-MAC地址)进行查找,以确认该目的MAC的网卡连接在哪一个节点上,然后将该帧转发至该节点。如果在地址表中没有找到该MAC地址,也就是说,该目的MAC地址是首次出现,交换机就将数据包广播到所有节点。拥有该MAC地址的网卡在接收到该广播帧后,将立即做出应答,从而使交换机将其节点的“MAC地址”添加到MAC地址表中。换言之,当交换机从某一节点收到一个帧时(广播帧除外),将对地址表执行两个动作,一是检查该帧的源MAC地址是否已在地址表中,如果没有,则将该MAC地址加到地址表中,这样以后就知道该MAC地址在哪一个节点;二是检查该帧的目的MAC地址是否已在地址表中,如果该MAC地址已在地址表中,则将该帧发送到对应的节点即可,而不必像集线器那样将该帧发送到所有节点,只须将该帧发送到对应的节点,从而使那些既非源节点又非目的节点的节点间仍然可以进行相互间的通
信,从而提供了比集线器更高的传输速率。如果该MAC地址不在地址表中,则将该帧发送到所有其它节点(源节点除外),相当于该帧是一个广播帧。
讲到这里我们要明白一个事实,那就是交换机在刚买回来不可能知道您所在网络中各节点的地址,也就是说在交换机刚刚打开电源时,其MAC地址表是一片空白。那么,交换机的地址表是怎样建立起来的呢?学习!交换机根据以太网帧中的源MAC地址来更新地址表。当一台计算机打开电源后,安装在该系统中的网卡会定期发出空闲包或信号,交换机即可据此得知它的存在以及其MAC地址,这就是所谓自动地址学习。由于交换机能够自动根据收到的以太网帧中的源MAC地址更新地址表的内容,所以交换机使用的时间越长,学到的MAC地址就越多,未知的MAC地址就越少,因而广播的包就越少,速度就越快。
那么,交换机是否会永久性地记住所有的端口号-MAC地址关系呢?不是的。由于交换机中的内存毕竟有限,因此,能够记忆的MAC地址数量也是有限的。既然不能无休止地记忆所有的MAC地址,那么就必须赋予其相应的忘却机制,从而吐故纳新。事实上,工程师为交换机设定了一个自动老化时间(Auto-aging),若某MAC地址在一定时间内(默认为300秒)不再出现,那么,交换机将自动把该MAC地址从地址表中清除。当下一次该MAC地址重新出现时,将会被当作新地址处理。
综上所述,交换机作为当前局域网的主要连接设备,与集线器相比具有许多明显的优点,目前正有全面取代集线器之势,随着交换技术的不断发展,以太网交换机的价格急剧下降,交换到桌面已是大势所趋。如果网络上拥有大量的用户、繁忙的应用程序和各式各样的服务器,而且你还未对网络结构做出任何调整,那么整个网络的性能可能会非常低。最为有效的解决方法就是用交换机替代原来的集线器,当然交换机的价格会比集线器贵些,但目前来说应该完全可以接受。况且所带来的性能提绝不是“一点点”那么简单!
下一篇我们要介绍交换机的几种常见分类方法。
由于交换机所具有许多优越性,所以它的应用和发展速度远远高于集线器,出现了各种类型的交换机,主要是为了满足各种不同应用环境需求。本篇就要为大家介绍当前交换机的一
些主流分类。
一、从网络覆盖范围划分
1。 广域网交换机
广域网交换机主要是应用于电信城域网互联、互联网接入等领域的广域网中,提供通信用的基础平台,
2、局域网交换机
这种交换机就是我们常见的交换机了,也是我们学习的重点。局域网交换机应用于局域网络,用于连接终端设备,如服务器、工作站、集线器、路由器、网络打印机等网络设备,提供高速独立通信通道。
其实在局域网交换机中又可以划分为多种不同类型的交换机。下面继续介绍局域网交换机的主要分类标准、
二、 根据传输介质和传输速度划分
根据交换机使用的网络传输介质及传输速度的不同我们一般可以将局域网交换机分为以太网交换机、快速以太网交换机、千兆(G位)以太网交换机、10千兆(10G位)以太网交换机、FDDI交换机、ATM交换机和令牌环交换机等。
1、以太网交换机
首先要说明的一点是,这里所指的“以太网交换机”是指带宽在100Mbps以下的以太网所用交换机,其实下面我们还会要讲到一种“快速以太网交换机”、“千兆以太网交换机”和“10千兆以太网交换机”其实也是以太网交换机,只不过它们所采用的协议标准、或者传输介质不一样,当然其接口形式也可能不一样。
以太网交换机是最普遍和便宜的,它的档次比较齐全,应用领域也非常广泛,在大大小小的局域网都可以见到它们的踪影。以太网包括三种网络接口:RJ-45、BNC和AUI,所用的传输介质分别为:双绞线、细同轴电缆和粗同轴电缆。不要以为一讲以太网就都是RJ-45接口的,只不过双绞线类型的RJ-45接口在网络设备中非常普遍而已。当然现在的交换机通常不可能全是BNC或AUI接口的,因为目前采用同轴电缆作为传输介质的网络现在已经
很少见了,而一般是在RJ-45接口的基础上为了兼顾同轴电缆介质的网络连接,配上BNC或AUI接口。如图1所示的是一款带有RJ-45和AUI接口的以太网交换机产品示意图。
图1
2、快速以太网交换机
这种交换机是用于100Mbps快速以太网。快速以太网是一种在普通双绞线或者光纤上实现100Mbps传输带宽的网络技术。要注意的是,一讲到快速以太网就认为全都是纯正100Mps带宽的端口,事实上目前基本上还是10/100Mbps自适应型的为主。同样一般来说这种快速以太网交换机通常所采用的介质也是双绞线,有的快速以太网交换机为了兼顾与其它光传输介质的网络互联,或许会留有少数的光纤接口“SC”。图2所示的是一款快速以太网交换机产品示意图。
图2
3、千兆以太网交换机
千兆以太网交换机是用于目前较新的一种网络--千兆以太网中,也有人把这种网络称之为“吉位(GB)以太网”,那是因为它的带宽可以达到1000Mbps。它一般用于一个大型网络的骨干网段,所采用的传输介质有光纤、双绞线两种,对应的接口为“SC”和“RJ-45”接口两种。图3所示的就是两款千兆以太网交换机产品示意图。
图3
4、10千兆以太网交换机
10千兆以太网交换机主要是为了适应当今10千兆以太网络的接入,它一般是用于骨干网段上,采用的传输介质为光纤,其接口方式也就相应为光纤接口。同样这种交换机也称之为“10G以太网交换机”,道理同上。因为目前10G以太网技术还处于研发初级阶段,价格也非常昂贵(一般要2-9万美元),所以10G以太网在各用户的实际应用还不是很普遍,再则多数企业用户都早已采用了技术相对成熟的千兆以太网,且认为这种速度已能满足企业数据交换需求。图4所示的是一款10千兆以太网交换机产品示意图,从图中可以看出,它全采用光纤接口。
图4
5、ATM交换机
ATM交换机是用于ATM网络的交换机产品。ATM网络由于其独特的技术特性,现在还只广泛用于电信、邮政网的主干网段,因此其交换机产品在市场上很少看到。如我们在下面将要讲的ADSL宽带接入方式中如果采用PPPoA协议的话,在局端(NSP端)就需要配置ATM交换机,有线电视的Cable Modem互联网接入法在局端也采用ATM交换机。它的传输介质一般采用光纤,接口类型同样一般有两种:以太网RJ-45接口和光纤接口,这两种接口适合与不同类型的网络互联。图5就是这样一款ATM交换机产品示意图。它相对于物美价廉的以太网交换机而言,ATM交换机的价格实是很高的,所以也就在普通局域网中见不到它的踪迹。
图5
6。 FDDI交换机
FDDI技术是在快速成以太网技术还没有开发出来之前开发的,它主要是为了解决当时10Mbps以太网和16Mbps令牌网速度的局限,因为它的传输速度可达到100Mbps,这比当时的前两个速度高出许多,所以在当时还是有一定市场。但它当时是采用光纤作为传输介质的,比以双交线为传输介质的网络成本高许多,所以随着快速以太网技术的成功开发,FDDI技术也就失去了它应有的市场。正因如此,FDDI设备,如FDDI交换机也就比较少见了,FDDI交换机是用于老式中、小型企业的快速数据交换网络中的,它的接口形式都为光纤接口,图6所示的是一款3COM公司的FDDI交换机产品示意图。
图6
三、根据应用层次划分
根据交换机所应用的网络层次,我们又可以将网络交换机划分为可分为企业级交换机、校园网交换机、部门级交换机和工作组交换机、桌机型交换机五种。
1、企业级交换机
企业级交换机属于一类高端交换机,一般采用模块化的结构,可作为企业网络骨干构建高速局域网,所以它通常用于企业网络的最顶层。
企业级交换机可以提供用户化定制、优先级队列服务和网络安全控制,并能很快适应数据增长和改变的需要,从而满足用户的需求。对于有更多需求的网络,企业级交换机不仅能传送海量数据和控制信息,更具有硬件冗余和软件可伸缩性特点,保证网络的可靠运行。这种交换机从它所处的位置可以清楚地看出它自身的要求非同一般,起码在带宽、传输速率以背板容量上要比一般交换机要高出许多,所以企业级交换机一般都是千兆以上以太网交换机。企业级交换机所采用的端口一般都为光纤接口,这主要是为了保证交换机高的传输速率。那么什么样的交换机可以称之为企业级交换机呢?说实在的还没有一个明确的标准,只是现在通常这么认为,如果是作为企业的骨干交换机时,能支持500个信息点以上大型企业应用的交换机为企业级交换机,如图7所示的是友讯的一款模块化千兆以太网交换机,它属于企业级交换机范畴。
图7
企业交换机还可以接入一个大底盘。这个底盘产品通常支持许多不同类型的组件,比如快速以太网和以大网中继器、FDDI集中器、令牌环MAU和路由器。企业交换机在建设企业级别的网络时非常有用,尤其是对需要支持一些网络技术和以前的系统。基于底盘设备通常有非常强大的管理特征,因此非常适合于企业网络的环境。不过,基于底盘设备的成本都非常高,很少中、小型企业能承担得起。
2。 校园网交换机
校园网交换机,这种交换机应用相对较少,主要应用于较大型网络,且一般作为网络的骨干交换机。这种交换机具有快速数据交换能力和全双工能力,可提供容错等智能特性,还支持扩充选项及第三层交换中的虚拟局域网(VLAN)等多种功能。
这种交换机通常用于分散的校园网而得名,其实它不一定要应用校园网络中,只表示它主要应用于物理距离分散的较大型网络中。因为校园网比较分散,传输距离比较长,所以在骨干网段上,这类交换机通常采用光纤或者同轴电缆作为传输介质,交换机当然也就需提供SC光纤口和BNC或者AUI同轴电缆接口。
3、部门级交换机
部门级交换机是面向部门级网络使用的交换机,它较前面两种所能随的网络规模要小许多。这类交换机可以是固定配置,也可以是模块配置,一般除了常用的RJ-45双绞线接口外,还带有光纤接口。部门级交换机一般具有较为突出的智能型特点,支持基于端口的VLAN(虚拟局域网),可实现端口管理,可任意采用全双工或半双工传输模式,可对流量进行控制,有网络管理的功能,可通过PC机的串口或经过网络对交换机进行配置、监控和测试。如果作为骨干交换机,则一般认为支持300个信息点以下中型企业的交换机为部门级交换机,如图8所示是一款部门级交换机产品示意图。
图8
4。 工作组交换机
工作组交换机是传统集线器的理想替代产品,一般为固定配置,配有一定数目的10Base-T或100Base-TX以太网口。交换机按每一个包中的MAC地址相对简单地决策信息转发,这种转发决策一般不考虑包中隐藏的更深的其他信息。与集线器不同的是交换机转发延迟很小,操作接近单个局域网性能,远远超过了普通桥接互联网络之间的转发性能。
工作组交换机一般没有网络管理的功能,如果是作为骨干交换机则一般认为支持100个信息点以内的交换机为工作组级交换机。如图9所示的是一款快速以太网工作组交换机产品示意图。
图9
5、桌面型交换机
桌面型交换机,这是最常见的一种最低档交换机,它区别于其他交换机的一个特点是支持的每端口MAC地址很少,通常端口数也较少(12口以内,但不是绝对),只具备最基本的交换机特性,当然价格也是最便宜的。
这类交换机虽然在整个交换机中属最低档的,但是相比集线器来说它还是具有交换机的通用优越性,况且有许多应用环境也只需这些基本的性能,所以它的应用还是相当广泛的。它主要应用于小型企业或中型以上企业办公桌面。在传输速度上,目前桌面型交换机大都提供多个具有10/100Mbps自适应能力的端口。图10是两款不同品牌型号的桌面型交换机产品示意图。
图10
四、根据交换机的结构划分
如果按交换机的端口结构来分,交换机大致可分为:固定端口交换机和模块化交换机两种不同的结构。其实还有一种是两者兼顾,那就是在提供基本固定端口的基础之上再配备一定的扩展插槽或模块。
1。 固定端口交换机
固定端口顾名思义就是它所带有的端口是固定的,如果是8端口的,就只能有8个端口,再不能添加。16个端口也就只能有16个端口,不能再扩展。目前这种固定端口的交换机比较常见,端口数量没有明确的规定,一般的端口标准是8端口、16端口和24端口。但现在也是各生产厂家也是各自说了算,他们认为多少个端口有市场就生产多少个端口的。目前交换机的端口比较杂,非标准的端口数主要有:4端口,5端口、10端口、12端口、20端口、22端口和32端口等。
固定端口交换机虽然相对来说价格便宜一些,但由于它只能提供有限的端口和固定类型的接口,因此,无论从可连接的用户数量上,还是所从可使用的传输介质上来讲都具有一定的局限性,但这种交换机在工作组中应用较多,一般适用于小型网络、桌面交换环境。如图11、图12分别是一款16端口和24端口的交换机产品示意图。
图11
图12
固定端口交换机因其安装架构又分为桌面式交换机和机架式交换机。与集线器相同,机架式交换机更易于管理,更适用于较大规模的网络,它的结构尽寸要符合19英寸国际标准,它是用来与其它交换设备或者是路由器、服务器等集中安装在一个机柜中。而桌面式交换机,
由于只能提供少量端口且不能安装于机柜内,所以,通常只用于小型网络。如图13和图14所示的分别为一款桌面式固定端口交换机和机架式固定端口交换机。
图13
图14
2、模块化交换机
模块化交换机虽然在价格上要贵很多,但拥有更大的灵活性和可扩充性,用户可任意选择不同数量、不同速率和不同接口类型的模块,以适应千变万化的网络需求。而且,机箱式交换机大都有很强的容错能力,支持交换模块的冗余备份,并且往往拥有可热插拔的双电源,以保证交换机的电力供应。在选择交换机时,应按照需要和经费综合考虑选择机箱式或固定方式。一般来说,企业级交换机应考虑其扩充性、兼容性和排错性,因此,应当选用机箱式交换机;而骨干交换机和工作组交换机则由于任务较为单一,故可采用简单明了的固定式交换机。如图15为一款模块化快速以太网交换机产品示意图,在其中就具有4个可拨插模块,可根据实际需要灵活配置。
图15
五、根据交换机工作的协议层划分
我们知道网络设备都是对应工作在OSI/RM这一开放模型的一定层次上,工作的层次越高,说明其设备的技术性越高,性能也越好,档次也就越高。交换机也一样,随着交换技术的发展,交换机由原来工作在OSI/RM的第二层,发展到现在有可以工作在第四的交换机出现,所以根据工作的协议层交换机可分第二层交换机、第三层交换机和第四层交换机。
1、第二层交换机
第二层交换机是对应于OSI/RM的第二协议层来定义的,因为它只能工作在OSI/RM开放体系模型的第二层--数据链路层。第二层交换机依赖于链路层中的信息(如MAC地址)完成不同端口数据间的线速交换,主要功能包括物理编址、错误校验、帧序列以及数据流控制。这是最原始的交换技术产品,目前桌面型交换机一般是属于这类型,因为桌面型的交换机一般来说所承担的工作复杂性不是很强,又处于网络的最基层,所以也就只需要提供最基本的数据链接功能即可。目前第二层交换机应用最为普遍(主要是价格便宜,功能符合中、小企业实际应用需求),一般应用于小型企业或中型以上企业网络的桌面层次。如下图16所示的是一款第二层交换机的产品示意图。要说明的是,所有的交换机在协议层次上来说都是向下兼容的,也就是说所有的交换机都能够工作在第二层。
图16
2、第三层交换机
第三层同样是对应于OSI/RM开放体系模型的第三层--网络层来定义的,也就是说这类交换机可以工作在网络层,它比第二层交换机更加高档,功能更加强。第三层交换机因为工作于OSI/RM模型的网络层,所以它具有路由功能,它是将IP地址信息提供给网络路径选择,并实现不同网段间数据的线速交换。当网络规模较大时,可以根据特殊应用需求划分为小面独立的VLAN网段,以减小广播所造成的影响时。通常这类交换机是采用模块化结构,以适应灵活配置的需要。在大中型网络中,第三层交换机已经成为基本配置设备。图17所示的是3COM公司是一款第三层交换机产品示意图。
图17
3、第四层交换机
第四层交换机是采用第四层交换技术而开发出来的交换机产品,当然它工作于OSI/RM模型的第四层,即传输层,直接面对具体应用。第四层交换机支持的协议是各种各样的,如HTTP,FTP、Telnet、SSL等。在第四层交换中为每个供搜寻使用的服务器组设立虚IP地址(VIP),每组服务器支持某种应用。在域名服务器(DNS)中存储的每个应用服务器地址是VIP,而不是真实的服务器地址。当某用户申请应用时,一个带有目标服务器组的VIP连接请求(例如一个TCPSYN包)发给服务器交换机。服务器交换机在组中选取最好的服务器,将终端地址中的VIP用实际服务器的IP取代,并将连接请求传给服务器。这样,同一区间所有的包由服务器交换机进行映射,在用户和同一服务器间进行传输。如图18所示的是一款第四层交换机产品示意图,从图中可以看出它也是采用模块结构的。
图18
第四层交换技术相对原来的第二层、第三层交换技术具有明显的优点,从操作方面来看,第四层交换是稳固的,因为它将包控制在从源端到宿端的区间中。另一方面,路由器或第三层交换,只针对单一的包进行处理,不清楚上一个包从哪来、也不知道下一个包的情况。它们只是检测包报头中的TCP端口数字,根据应用建立优先级队列,路由器根据链路和网络可用的节点决定包的路由;而第四层交换机则是在可用的服务器和性能基础上先确定区间。目前由于这种交换技术尚未真正成熟且价格昂贵,所以,第四层交换机在实际应用中目前还较少见。
六、根据是否支持网管功能分
如果按交换机是否支持网络管理功能,我们可以将交换机又可大分为“网管型”和“非网管理型”两大类。
网管型交换机的任务就是使所有的网络资源处于良好的状态。网管型交换机产品提供了基于终端控制口(Console)、基于Web页面以及支持Telnet远程登录网络等多种网络管理方式。因此网络管理人员可以对该交换机的工作状态、网络运行状况进行本地或远程的实时监控,纵观全局地管理所有交换端口的工作状态和工作模式。网管型交换机支持SNMP协议,SNMP协议由一整套简单的网络通信规范组成,可以完成所有基本的网络管理任务,对网络资源的需求量少,具备一些安全机制,。NMP协议的工作机制非常简单,主要通过各种不同类型的消息,即PDU(协议数据单位)实现网络信息的交换。但是网管型交换机相对下面所介绍的非网管型交换机来说要贵许多。
网管型交换机采用嵌入式远程监视(RMON)标准用于跟踪流量和会话,对决定网络中的瓶颈和阻塞点是很有效的。软件代理支持4个RMON组(历史、统计数字、警报和事件),从而增强了流量管理、监视和分析。统计数字是一般网络流量统计;历史是一定时间间隔内网络流量统计;警报可以在预设的网络参数极限值被超过时进行报警;时间代表管理事件。
还有网管型交换机提供基于策略的QoS(Quality of service)。策略是指控制交换机行为的规则,网络管理员利用策略为应用流分配带宽、优先级以及控制网络访问,其重点是满足服务水平协议所需的带宽管理策略及向交换机发布策略的方式。在交换机的每个端口处用来表示端口状态、半双工/全双工和10BaseT/100BaseT的多功能发光二极管(LED)以及表示系统、冗余电源(RPS)和带宽利用率的交换级状态LED形成了全面、方便的可视管理系统。目前大多数部门级以下的交换机多数都是非网管型的,只有企业级及少数部门级的交换机支持网管功能,图19所示的是两款网管型交换机产品示意图。
图19
以上对交换机的几种主流分类方法逐个进行了介绍,相信各位对交换机的主要类型有一个基本全面的了解。下一篇要介绍交换机的主要交换技术及选购注意事项。
要正确理解交换机的工作原理以及其优越性,就不能不提到交换机的一些主流交换技术,正是在这些交换技术基础上,交换机才实现了比集线器更好地性能,为此本篇介绍几个主流的交换技术,随后在本篇最后将介绍交换机选购时的一些注意事项,帮助大家正确选购。
一、交换机的交换方式
目前交换机在传送源和目的端口的数据包时通常采用直通式交换、存储转发式和碎片隔离方式三种数据包交换方式,下面分别简述。
1、直通交换方式
采用直通交换方式的以太网交换机可以理解为在各端口间是纵横交叉的线路矩阵电话交换机。它在输入端口检测到一个数据包时,检查该包的包头,获取包的目的地址,启动内部的动态查找表转换成相应的输出端口,在输入与输出交叉处接通,把数据包直通到相应的端口,实现交换功能。由于它只检查数据包的包头(通常只检查14个字节),不需要存储,所以切入方式具有延迟小,交换速度快的优点(所谓延迟(Latency)是指数据包进入一个网络设备到离开该设备所花的时间)。
它的缺点主要有三个方面:一是因为数据包内容并没有被以太网交换机保存下来,所以无法检查所传送的数据包是否有误,不能提供错误检测能力;第二,由于没有缓存,不能将具有不同速率的输入/输出端口直接接通,而且容易丢包。如果要连到高速网络上,如提供快速以太网(100BASE-T)、FDDI或ATM连接,就不能简单地将输入/输出端口“接通”,因为输入/输出端口间有速度上的差异,必须提供缓存;第三,当以太网交换机的端口增加时,交换矩阵变得越来越复杂,实现起来就越困难。
2、存储转发方式
存储转发(Store and Forward)是计算机网络领域使用得最为广泛的技术之一,以太网交换机的控制器先将输入端口到来的数据包缓存起来,先检查数据包是否正确,并过滤掉冲突包错误。确定包正确后,取出目的地址,通过查找表找到想要发送的输出端口地址,然后将该包发送出去。正因如此,存储转发方式在数据处理时延时大,这是它的不足,但是它可以对进入交换机的数据包进行错误检测,并且能支持不同速度的输入/输出端口间的交换,可有效地改善网络性能。它的另一优点就是这种交换方式支持不同速度端口间的转换,保持高速端口和低速端口间协同工作。实现的办法是将10Mbps低速包存储起来,再通过100Mbps速率转发到端口上。
3、碎片隔离式(Fragment Free)
这是介于直通式和存储转发式之间的一种解决方案。它在转发前先检查数据包的长度是否够64个字节(512 bit),如果小于64字节,说明是假包(或称残帧),则丢弃该包;如果大于64字节,则发送该包。该方式的数据处理速度比存储转发方式快,但比直通式慢,但由于能够避免残帧的转发,所以被广泛应用于低档交换机中。
使用这类交换技术的交换机一般是使用了一种特殊的缓存。这种缓存是一种先进先出的FIFO(First In First Out),比特从一端进入然后再以同样的顺序从另一端出来。当帧被接收时,它被保存在FIFO中。如果帧以小于512比特的长度结束,那么FIFO中的内容(残帧)就会被丢弃。因此,不存在普通直通转发交换机存在的残帧转发问题,是一个非常好的解决方案。数据包在转发之前将被缓存保存下来,从而确保碰撞碎片不通过网络传播,能够在很大程度上提高网络传输效率。
二、主流堆栈交换技术
通过我们前面的介绍已经知道,按交换机工作在OSI/RM堆栈协议层来分的话,目前的交换机主要有第二层、第三层和第四层交换机,它们都有其对应的主流交换技术,下面分别予以介绍。
1、第二层交换技术
90年代初,在网络系统集成模式中大量引入了局域网交换机。局域网交换机是一种第二层网络设备,交换机在操作过程中不断地收集资料去建立它本身的地址表,这个表相当简单,主要标明某个MAC地址是在哪个端口上被发现的。当交换机接收到一个数据封包时,它检查该封包的目的MAC地址,核对一下自己的地址表以决定从哪个端口发送出去。而不是象集线器那样,任何一个发送方数据都会出现在集线器的所有端口上(不管是否为你所需)。这时的交换机因为其只能工作在OSI/RM的第二层,所以也就称之为第二层交换机,所采用的技术也就称之为“第二层交换技术”。
“第二层交换”是指OSI第二层或称MAC层的交换。第二层交换机的引入,使得网络站点间可独享带宽,消除了无谓的碰撞检测和出错重发,提高了传输效率,在交换机中可并行的维护几个独立的、互不影响的通信进程。在交换网络环境下,用户信息只在源节点与目的节点之间进行传送,其他节点是不可见的。但有一点例外,当某一节点在网上发送广播或多目广播时,或某一节点发送了一个交换机不认识的MAC地址封包时,交换机上的所有节点都将收到这一广播信息。整个交换环境构成一个大的广播域。也就是说第二层交换机仍可能存在“广播风暴”,广播风暴会使网络的效率大打折扣,但出现情况的情形的比率比起集线器来说要少许多。
第二层交换仍存在“广播风暴”的弱点,同时,使用第二层交换并不能给路由器的功能带来什么进步。这样的结果是,第二层交换只能在本地不含任何路由器的工作组中取得性能的提高。在使用第二层交换的工作组之间,通过路由器的端到端性能会因为路由器阻塞而掉包,从而导致实质上的性能下降。正因如此,其于路由方式的第三交换技术顺应时代的需要而产生了。
2.第三层交换技术
在网络系统集成的技术中,直接面向用户的第一层接口和第二层交换技术方面已得到令人满意的答案。但是,作为网络核心、起到网间互连作用的路由器技术却没有质的突破。传统的路由器基于软件,协议复杂,与局域网速度相比,其数据传输的效率较低。但同时它又作为网段(子网,虚拟网)互连的枢纽,这就使传统的路由器技术面临严峻的挑战。随着Internet、Intranet的迅猛发展和B/S(浏览器/服务器)计算模式的广泛应用,跨地域、跨网络的业务急剧增长,业界和用户深感传统的路由器在网络中的瓶颈效应,改进传统的路由技术已迫在眉睫。在这种情况下,一种新的路由技术应运而生,这就是第三层交换技术。说它是路由器,因为它可操作在网络协议的第三层,是一种路由理解设备并可起到路由决定的作用;说它是交换器,是因为它的速度极快,几乎达到第二层交换的速度。
一个具有第三层交换功能的设备是一个带有第三层路由功能的第二层交换机,但它是二者的有机结合,并不是简单的把路由器设备的硬件及软件简单地叠加在局域网交换机上。从硬件的实现上看,目前,第二层交换机的接口模块都是通过高速背板/总线(速率可高达几十Gbit/s)交换数据的。在第三层交换机中,与路由器有关的第三层路由硬件模块也插接在高速背板/总线上,这种方式使得路由模块可以与需要路由的其他模块间高速的交换数据,从而突破了传统的外接路由器接口速率的限制(10Mbit/s——100Mbit/s)。在软件方面,第三层交换机也有重大的举措,它将传统的基于软件的路由器软件进行了界定。目前基于第三层交换技术的第三层交换机得到了广泛的应用,并得到了用户一致的赞同。
3、第四层交换
虽然第三层交换技术使得用户可在工作组之间获得无失真的100Mbps、1000Mbps的数据交换速率。但这一切还得有一个先决条件,那就是只有当用户和服务器本身都能跟上网络中的带宽增长,包的传输可以达到系统的极限,即达到CPU能够处理的最大速度,才是真正的
成功。目前的主要问题在于提高服务器的能力,因为越来越多功能强大的工作站连到Ethernet交换的桌面上,用户桌面的能力并没有得到充分的发挥。
如果服务器容量能够满足需求,问题解决起来就相当简单。不幸的是,即使是最简单的对称多处理服务器的CPU升级也需要大量的时间,而且需要冗长繁杂的计划和管理。当一个网络的基础结构建立在G比特速率的第二层和第三层交换上,有高速WAN接入,服务器问题就将成为随之而来的瓶颈。也就是说如果服务器速度跟不上,即使是具有最快速交换的网络也不能完全确保端到端的性能。可以想像高优先权的业务在这种QoS使能的网络中会因服务器中低优先权的业务队列而阻塞。在更糟的情况下,服务器甚至会丧失循环处理业务的能力。在这样的需求背景下,第四层交换技术也就设计产生了,基于服务器设计的第四层交换扩展了服务器、第二层、第三层交换的性能和业务流的管理功能。
第四层交换功能就像是虚IP,直接指向物理服务器。它传输的业务服从的协议多种多样,有HTTP、FTP、NFS、Telnet或其他协议。这些业务在物理服务器基础上,需要复杂的载量平衡算法。在IP世界,业务类型由终端TCP或UDP端口地址来决定,在第四层交换中的应用区间则由源端和终端IP地址、TCP和UDP端口共同决定。
在第四层交换中为每个供搜寻使用的服务器组设立虚IP地址(VIP),每组服务器支持某种应用。在域名服务器(DNS)中存储的每个应用服务器地址是VIP,而不是真实的服务器地址。当某用户申请应用时,一个带有目标服务器组的VIP连接请求(例如一个TCPSYN包)发给服务器交换机。服务器交换机在组中选取最好的服务器,将终端地址中的VIP用实际服务器的IP取代,并将连接请求传给服务器。这样,同一区间所有的包由服务器交换机进行映射,在用户和同一服务器间进行传输。第四层交换技术的优点主要体现在以下几个方面:
(1)、从操作方面来看,第四层交换是稳固的,因为它将包控制在从源端到目的端的区间中。
(2)、另一方面,路由器或第三层交换技术,只针对单一的包进行处理,不清楚上一个包从哪来、也不知道下一个包的情况。它们只是检测包报头中的TCP端口数字,根据应用建立优先级队列。路由器根据链路和网络可用的节点决定包的路由。
(3)、第四层交换使用第三层和第四层信息包的报头信息,根据应用区间识别业务流,
将整个区间段的业务流分配到合适的应用服务器进行处理。每个开放的区间与特定的服务器相关,为跟踪服务器,第四层交换使用多个服务器支持的特殊应用,随着服务器的增加而增强网络的整体性能。同时,第四层交换通过减少对任何特定服务器的依赖性而提高应用的可靠性。
(4)、第四层交换也要求端到端QoS,提高第二层和第三层交换中一包接一包QoS传输的能力。例如,从级别高用户来的业务或重要应用的网络业务流,可以分配给最快的I/O系统和CPU,而普通的业务就分配给性能较差的机器。
以上介绍了一些基本的第二层、第三层和第四层交换技术,其实还有许多复杂、先进的交换技术,在此就不作详细介绍了。同时要注意,以上所介绍的这些交换技术并不是只能单独存在,也许它们结合使用更具有优势,例如第二层、第三层和第四层交换在校园网络中可以有很好的应用。第二层交换机连接用户和网络,在子网中指引业务流,第三层交换机或路由器将包从一个子网传到另一个子网,第四层交换机将包传到终端服务器。
三、交换机的选购
交换机虽然目前有进入到桌面的趋势,但是对于一些比较高档的交换来说一般只有在较大型的局域网中存在,而且由于交换机历来在人们心中的神秘性决定了在交换机的选购方面多数情况下是商家说了算。
在交换机的选购方面要注意的事项比较多,不再是像集线器一样那么几个简单的参数就可决定的。下面所列的是在交换机选购时要注意的几个主要方面。
1.转发方式
数据包的转发方式在前面已经介绍过,主要分为“直通式转发”(现为准直通式转发)和“存储式转发”。由于不同的转发方式适应于不同的网络环境,因此,应当根据自己的需要作出相应的选择。直通式由于只检查数据包的包头,不需要存储,所以切入方式具有延迟小,交换速度快的优点。但同时它又具有以以上所介绍的三个缺点。
存储转发方式在数据处理时延时大,但它可以对进入交换机的数据包进行错误检测,并且能支持不同速度的输入/输出端口间的交换,有效地改善网络性能。同时这种交换方式支持不同速度端口间的转换,保持高速端口和低速端口间协同工作。
低端交换机通常只拥有一种转发模式,或是存储转发模式,或是直通模式,往往只有中高端产品才兼具两种转发模式,并具有智能转换功能,可根据通信状况自动切换转发模式。通常情况下,如果网络对数据的传输速率要求不是太高,可选择存储转发式交换机;如果网络对数据的传输速率要求较高,可选择直通转发式交换机。
2.延时
交换机的延时(Latency)也称延迟时间,是指从交换机接收到数据包到开始向目的端口发送数据包之间的时间间隔。这主要受所采用的转发技术等因素的影响,延时越小,数据的传输速率越快,网络的效率也就越高。特别是对于多媒体网络而言,较大的数据延迟,往往导致多媒体的短暂中断,所以交换机的延迟时间越小越好,同时要注意的中,延时越小的交换机价格也就越贵。
3.管理功能
交换机的管理功能(Management)是指交换机如何控制用户访问交换机,以及系统管理人员通过软件对交换机的可管理程度如何。如果需要以上配置和管理,则须选择网管型交换机,否则只需选择非网管型的。目前几乎所有中、高档交换机都是可网管的,一般来说所有的厂商都会随机提供一份本公司开发的交换机管理软件,所有的交换机都能被第三方管理软件所管理。低档的交换机来通常不具有网管功能,属“傻瓜”型的,只需接上电源、插好网线即可正常工作。网管型价格要贵许多。
4.MAC地址数
通常前面的介绍,我们知道交换机之所以能够直接对目的节点发送数据包,而不是像集线器一样以广播方式对所有节点发送数据包,最关键的技术就是交换机可以识别连在网络上的节点的网卡MAC地址,形成一个MAC地址表。这个MAC地址表存放于交换机的缓存中,并
记住这些地址,这样一来当需要向目的地址发送数据时,交换机就可在MAC地址表中查找这个MAC地址的节点位置,然后直接向这个位置的节点发送。
但是不同档次的交换机每个端口所能够支持的MAC数量不同。在交换机的每个端口,都需要足够的缓存来记忆这些MAC地址,所以Buffer容量的大小就决定了相应交换机所能记忆的MAC地址数多少。通常交换机只要能够记忆1024个MAC地址基本上就可以了,而一般的交换机通常都能做到这一点,所以如果对网络规模不是很大的情况下,这参数无需太多考虑。当然越是高档的交换机能记住的MAC地址数就越多,这在选择时要视所连网络的规模而定了。
5.背板带宽
现在越来越多的100M交换到桌面方案是以实现VOD(视频点播)为目的,如果您有同样需求,在选购交换器时应注意交换机背板带宽,当然是越宽越好,它将为您的交换器在高负荷下提供高速交换。由于所有端口间的通讯都需要通过背板完成,所以背板所能够提供的带宽就成为端口间并发通讯时的总带宽。带宽越大,能够给各通讯端口提供的可用带宽越大,数据交换速度越快;带宽越小,则能够给各通讯端口提供的可用带宽越小,数据交换速度也就越慢。因此,在端口带宽、延迟时间相同的情况下,背板带宽越大,交换机的传输速率则越快。
6.端口
交换机也与集线器一样,也有端口带宽之分,但这里所指的带宽与集线器的端口带宽不一样,因为这里交换机上所指的端口带宽是独享的,而集线器上端口的带宽是共享的。交换机的端口带宽目前主要包括10M、100M和1000M三种,但就这三种带宽又有不同的组合形式,以满足不同类型网络的需要。最常见的组合形式包括n*100M+m*10M、n*10/100M、n*1000M+m*100M和n*1000M四种。
n*100M+m*10M就是在一个交换机上同时有“n”个100Mbps带宽的端口和“m”个10Mbps带宽的端口,这“n+m”就是交换机的端口总和。当然这“n”与“m”可以是相同的,也可以是不同的,一般来说这“n”数要远比“m”数小。这种组合的交换机既可以作为小型廉价网络的中心节点,也可以用于大、中型网络中的工作组交换机。因为它也具有
100Mbps带宽的端口,适合于大型网络的连接,100M端口一般用于服务器或主干网段的连接,或者用于级联至另一台交换机,10M端口则用于直接连接工作站计算机,从而实现不同交换机端口之间的高速连接,并满足网络内所有计算机对服务器高速连接的需求。该类交换机的最大特点就是价格低廉,且基本能够满足网络的所有需求。
n*10/100M,这种组合的交换机相比前面那种又要先进一些,因为它的每个端口都可以自适应地达到10Mbps或100Mbps的带宽,这比固定几个100Mbps带宽的交换机当然是方便许多,在性能方面也肯定要好许多。目前这种组合方式的交换机是当前市场上的主流产品,能够自动适应10Mbps或100Mbps的速率,可以无缝连接以太网和快速以太网。该类型的交换机既可以作为工作组交换机直接连接客户机,实现100Mbps到桌面的高速交换,也可以作为小型网络中心节点。当直接连接至计算机时,在全双工状态下收发各占100Mbps带宽,从而能够实现200Mbps的带宽。当与n*100M+m*10M类型的交换机连接时,为连接至不同端口的交换机提供较快链路,满足多个端口间同时传输数据的需要。
n*1000M+m*100M与上面所介绍的“n*100M+m*10M”组合形式的交换组合方式类似,只不过这里所指的带宽是“1000Mbps 与100Mbps”带宽,而不是“10Mbps与100Mbps”带宽的。这种端口配置的含义也是这种交换机同时具有n个1000Mbps带宽的端口和m个100Mbps带宽的端口,这里的“n+m”也一般是交换机的端口总数,但一般来说“n”值要远小于“m”值。目前这种配置的交换机已经逐渐由中心交换机和骨干交换机,慢慢地向大中型网络普及。也可作为小型网络中的中心交换机或骨干交换机,对上可直接连接至服务器,对下可连接各组交换机。千兆的带宽不仅能够很好地解决多用户对服务器突发性地访问问题,消除了服务器的瓶颈问题,而且还能够很好地解决高速交换机之间的互联问题,消除了级联端口的带宽瓶颈。当然这种交换机目前来说对于中、小型的单位来说还是有点贵。
n*1000M,这种交换机是目前很先进的一种,当然价格也是很贵的,因为它提供了全部都是1000Mbps的端口带宽,这种交换机目前一般是充当在大中型网络中心交换机或骨干交换机的角色。在中、小型企业单位局域网中一般来说还是很产见的,因为它实在太贵了,而且对于中、小型个、事业单位的局域网也根本用不上这1000Mbps的带宽。
7.光纤解决方案
最后要谈一点就是光纤的选择了,如果你的布线中必须选用光纤,则在您的交换机选择方案中可以有以下三种方案:其一选择具有光纤接口的交换机;另外还可以在模块结构的交换机中加装光纤模块;最后一种就是加装光纤与双绞线的转发器。第一种性能最好,但不够灵活,而且价格较贵;第二种方案具有较强的灵活配置能力,性能也较好,但价格最贵;最后一种方案价格最便宜,但性能受影响较大。
好了,有关交换机的基本技术及选购注意事项就简单介绍至此,下一篇就要正式介绍交换机的另一重要方面,即交换机的配置,这对于网管员来说是非常重要,而且是必须掌握,敬请关注!
交换机的配置一直以来是非常神秘的,不仅对于一般用户,对于绝大多数网管人员来说也是如此,同时也是作为网管水平高低衡量的一个重要而又基本的标志。这主要在两个原因,一是绝大多数企业所配置的交换机都是桌面非网管型交换机,根本不需任何配置,纯属“傻瓜”型,与集线器一样,接上电源,插好网线就可以正常工作;另一方面多数中、小企业老总对自己的网管员不是很放心,所以即使购买的交换机是网管型的,也不让自己的网管人员来配置,而是请厂商工程师或者其它专业人员来配置,所以这些中、小企业网管员也就很难有机会真正自己动手来配置一台交换机。
交换机的详细配置过程比较复杂,而且具体的配置方法会因不同品牌、不同系列的交换机而有所不同,本文教给大家的只是通用配置方法,有了这些通用配置方法,我们就能举一反三,融会贯通。
通常网管型交换机可以通过两种方法进行配置:一种就是本地配置;另一种就是远程网络配置两种方式,但是要注意后一种配置方法只有在前一种配置成功后才可进行,下面分别讲述。
一、本地配置方式
本地配置我们首先要遇到的是它的物理连接方式,然后还需要面对软件配置,在软件配置方面我们主要以最常见的思科的“Catalyst 1900”交换机为例来讲述。
因为要进行交换机的本地配置就要涉及到硬、软件的连接了,所以下面我们分这两步来说明配置的基本连接过程。
1.物理连接
因为笔记本电脑的便携性能,所以配置交换机通常是采用笔记本电脑进行,在实在无笔记本的情况下,当然也可以采用台式机,但移动起来麻烦些。交换机的本地配置方式是通过计算机与交换机的“Console”端口直接连接的方式进行通信的,它的连接图如图1所示。
图1
可进行网络管理的交换机上一般都有一个“Console”端口(这个在前面介绍集线器时已作介绍,交换机也一样),它是专门用于对交换机进行配置和管理的。通过Console端口连接并配置交换机,是配置和管理交换机必须经过的步骤。虽然除此之外还有其他若干种配置和管理交换机的方式(如Web方式、Telnet方式等),但是,这些方式必须依靠通过Console端口进行基本配置后才能进行。因为其他方式往往需要借助于IP地址、域名或设备名称才可以实现,而新购买的交换机显然不可能内置有这些参数,所以通过Console端口连接并配置交换机是最常用、最基本也是网络管理员必须掌握的管理和配置方式。
不同类型的交换机Console端口所处的位置并不相同,有的位于前面板(如Catalyst 3200和Catalyst 4006),而有的则位于后面板(如Catalyst 1900和Catalyst 2900XL)。通常是模块化交换机大多位于前面板,而固定配置交换机则大多位于后面板。不过,倒不用担心无法找到Console端口,在该端口的上方或侧方都会有类似“CONSOLE”字样的标识,如图2所示。
图2
除位置不同之外,Console端口的类型也有所不同,绝大多数(如Catalyst 1900和Catalyst 4006)都采用RJ-45端口(如图2所示),但也有少数采用DB-9串口端口(如Catalyst 3200)或DB-25串口端口(如Catalyst 2900)。
无论交换机采用DB-9或DB-25串行接口,还是采用RJ-45接口,都需要通过专门的Console线连接至配置用计算机(通常称作终端)的串行口。与交换机不同的Console端口相对应,Console线也分为两种:一种是串行线,即两端均为串行接口(两端均为母头),两端可以分别插入至计算机的串口和交换机的Console端口;另一种是两端均为RJ-45接头(RJ-45-to-RJ-45)的扁平线。由于扁平线两端均为RJ-45接口,无法直接与计算机串口进行连接,因此,还必须同时使用一个如图3所示的RJ-45-to-DB-9(或RJ-45-to-DB-25)的适配器。通常情况下,在交换机的包装箱中都会随机赠送这么一条Console线和相应的DB-9或DB-25适配器。
图3
2、软件配置
物理连接好了我们就要打开计算机和交换机电源进行软件配置了,下面我们以思科的一款网管型交换机“Catalyst 1900”来讲述这一配置过程。在正式进入配置之前我们还需要进入系统,步骤如下:
第1步:打开与交换机相连的计算机电源,运行计算机中的Windows 95、Windows 98或Windows 2000等其中一个操作系统。
第2步:检查是否安装有“超级终端”(Hyper Terminal)组件。如果在“附件”(Accessories)中没有发现该组件,可通过“添加/删除程序”(Add/Remove Program)的方式添加该Windows组件。
好了,“超级终端”安装好后我们就可以与交换机进行通信了(当然要连接好,并打开交换机电源了),下面的步骤就是正式进行配置了。在使用超级终端建立与交换机的通信之前,必须先对超级终端进行必要的设置。
Catalyst 1900交换机在配置前的所有缺省配置为:所有端口无端口名;所有端口的优先级为Normal方式,所有10/100Mbps以太网端口设为Auto方式,所有10/100Mbps以太网端口设为半双工方式,未配置虚拟子网。正式配置步骤如下(本文以Windows 98系统为例):
第1步:单击“开始”按钮,在“程序”菜单的“附件”选项中单击“超级终端”,弹出如图4所示界面。
图4
第2步:双击“Hypertrm”图标,弹出如图5所示对话框。这个对话框是用来对立一个新的超级终端连接项。
图5
第3步:在“名称”文本框中键入需新建超的级终端连接项名称,这主要是为了便于识别,没有什么特殊要求,我们这里键入“Cisco”,如果您想为这个连接项选择一个自己喜欢的图标的话,您也可以在下图的图标栏中选择一个,然后单击“确定”按钮,弹出如图6所示的对话框。
图6
第4步:在“连接时使用”下拉列表框中选择与交换机相连的计算机的串口。单击“确定”按钮,弹出如图7所示的对话框。
图7
第5步:在“波特率”下拉列表框中选择“9600”,因为这是串口的最高通信速率,其他各选项统统采用默认值。单击“确定”按钮,如果通信正常的话就会出现类似于如下所示的主配置界面,并会在这个窗口中就会显示交换机的初始配置情况。
Catalyst 1900 Management Console
Copyright (c) Cisco Systems, Inc。 1993-1999 All rights reserved。 Standard Edition Software
Ethernet address: 00-E0-1E-7E-B4-40 PCA Number: 73-2239-01 PCA Serial Number: SAD01200001 Model Number: WS-C1924-A System Serial Number: FAA01200001
---------------------------------------
User Interface Menu
[M] Menus //主配置菜单
[I] IP Configuration //IP地址等配置 [P] Console Password //控制密码配置
Enter Selection: //在此输入要选择项的快捷字母,然后按回车键确认
【注】“//”后面的内容为笔者对前面语句的解释,下同。
至此就正式进入了交换机配置界面了,下面的工作就可以正式配置交换机了。
3、交换机的基本配置
进入配置界面后,如果是第一次配置,则首先要进行的就是IP地址配置,这主要是为后面进行远程配置而准备。IP地址配置方法如下:
在前面所出现的配置界面“Enter Selection:”后中输入“I”字母,然后单击回车键,则出现如下配置信息:
The IP Configuration Menu appears。 Catalyst 1900 - IP Configuration Ethernet Address:00-E0-1E-7E-B4-40
-------------Settings------------------ [I] IP address [S] Subnet mask
[G] Default gateway
[B] Management Bridge Group [M] IP address of DNS server 1 [N] IP address of DNS server 2 [D] Domain name
[R] Use Routing Information Protocol
-------------Actions------------------- [P] Ping
[C] Clear cached DNS entries [X] Exit to previous menu Enter Selection:
在以上配置界面最后的“Enter Selection:”后再次输入“I”字母,选择以上配置菜单中的“IP address选项,配置交换机的IP地址,单击回车键后即出现如下所示配置界面:
Enter administrative IP address in dotted quad format (nnn。nnn。nnn。nnn): //按”nnn。nnn。nnn。nnn“格式输入IP地址
Current setting ===> 0.0.0.0 //交换机没有配置前的IP地址为”0.0.0.0“,代表任何IP地址
New setting ===> //在此处键入新的IP地址
如果你还想配置交换机的子网掩码和默认网关,在以上IP配置界面里面分别选择”S“和”G“项即可。现在我们再来学习一下密码的配置:
在以上IP配置菜单中,选择”X“项退回到前面所介绍的交换机配置界面。
输入”P“字母后按回车键,然后在出现的提示符下输入一个4 ̄8位的密码(为安全起见,在屏幕上都是以”*“号显示),输入好后按回车键确认,重新回到以上登录主界面。
在你配置好IP和密码后,交换机就能够按照默认的配置来正常工作。如果想更改交换机配置以及监视网络状况,你可以通过控制命令菜单,或者是在任何地方通过基于WEB的Catalyst 1900 Switch Manager来进行操作。
如果交换机运行的是Cisco Catalyst 1900/2820企业版软件。你可以通过命令控制端口(command-line interface CLI)来改变配置。当进入配置主界面后,就在显示菜单多了项”Command Line“,而少了项”Console Password“,它在下级菜单中进行。
1 user(s) now active on Management Console。 User Interface Menu [M] Menus [K] Command Line [I] IP Configuration Enter Selection:
在这一版本中的配置方法与前面所介绍的配置方法基本一样,不同的只是在这一版本中可以通过命令方式(选择”[K] Command Line“项即可)进行一些较高级配置,下面本文仅作简单介绍,在下篇中将介绍一个常见的高级配置,那就是VLAN的配置。
4、交换机高级配置的常见命令
在交换机的高级配置中,通常是利用以上配置菜单中的”[K] Command Line“项进行的。
Cisco交换机所使用的软件系统为Catalyst IOS。CLI的全称为”Command-Line Interface“,中文名称就称之为”命令行界面“,它是一个基于DOS命令行的软件系统模式,对大小写不敏感(即不区分大小写)。有这种模式的不仅交换机有、路由器、防火墙都有,其实就是一系列相关命令,但它与DOS命令不同,CLI可以缩写命令与参数,只要它包含的字符足以与其他当前可用至的命令和参数区别开来即可。虽然对交换机的配置和管理也可以通过多种方式实现,既可以使用纯字符形式的命令行和菜单(Menu),也可以使用图形界面的Web浏览器或专门的网管软件(如CiscoWorks 2000)。相比较而言,命令行方式的功能更强大,但掌握起来难度也更大些。下面把交换机的一些常用的配置命令介绍如下。
Cisco IOS共包括6种不同的命令模式:User EXEC模式、Privileged EXEC模式、VLAN dataBase模式、Global configuration模式、Interface configuration模式和Line configuration模式。当在不同的模式下,CLI界面中会出现不同的提示符。为了方便大家的查找和使用,表1列出了6种CLI命令模式的用途、提示符、访问及退出方法。
表1::CLI命令模式特征表 模式 User Exec 访问方法 提示符 退出方法 用途 开始一个进程 switch> 键入“ logout”改变终端设置或“quit” 执行基本测试 显示系统信息 Privilege-d Exec 在“ User Exec”switch# 模式中键入键入“ disable”校验键入的命退出 令。该模式由“enable”命令 VLAN Database 在“ Privileged switch(vlan)# Exec”模式中键入“vlan database”命令 Global 在“ privileged switch(config)# 密码保护 键入“ exit”,配置 VLAN参返回到“Privileged Exec”模式 键入“ exit”或将配置的参数“end”或下应用于整个交数 Configura-tion Exec”模式中键入“configure”命令 “Ctrl-Z”组合换机 键,返回至“privileged EXEC”状态 Interface 在“ Global switch(config-if)# 键入 exit返回至为“Global “ Ethernet Configura-tion Configuration”模式中,键入“interface ”命令 Configuration”interfaces”模式按下“Ctrl-Z ”组合键或键入“end”,返回至“Pprivileged Exec”模式 配置参数 Line 在模式“ Global switch(config-line)# 键入“ exit”返为回至“Global “ terminal Configura-tion Configuration”中,为“line console”命令指定一行 Configuration”line”配置参模式按下“Ctrl-Z ”或键入“end”,返回至“Privileged Exec”模式 数 Cisco IOS命令需要在各自的命令模式下才能执行,因此,如果想执行某个命令,必须先进入相应的配置模式。例如”interface type_number“命令只能在”Global configuration“模式下执行,而”duplex full-flow-control“命令却只能在”Interface configuration“模式下执行。
在交换机CLI命令中,有一个最基本的命令,那就是帮助命令”?“,在任何命令模式下,只需键入”?“,即显示该命令模式下所有可用到的命令及其用途,这就交换机的帮助命令。另外,还可以在一个命令和参数后面加”?“,以寻求相关的帮助。
例如,我们想看一下在”Privileged Exec“模式下在哪些命令可用,那么,可以在”#“提示符下键入”?“,并回车。再如,如果想继续查看”Show“命令的用法,那么,只需键入”show ?“并回车即可。另外,”?“还具有局部关键字查找功能。也就是说,如果只记得某个命令的前几个字符,那么,可以使用”?“让系统列出所有以该字符或字符串开头的命令。但是,在最后一个字符和”?“之间不得有空格。例如,在”Privileged Exec“模式下键入”c?“,系统将显示以”c“开头的所有命令。
还要说明的一点是:Cisco IOS命令均支持缩写命令,也就是说,除非您有打字的癖好,否则根本没有必要键入完整的命令和关键字,只要键入的命令所包含的字符长到足以与其他命令区别就足够了。例如,可将”show configure“命令缩写为”sh conf“,可将”show configure“命令缩写为”sh conf“然后回车执行即可。
以上介绍了命令方式下的常见配置命令,由于配置过程比较复杂,在此不作详细介绍。
二、远程配置方式
我们上面就已经介绍过交换机除了可以通过Console端口与计算机直接连接外,还可以通过交换机的普通端口进行连接。如果是堆栈型的,也可以把几台交换机堆在一起进行配置,因为这时实际上它们是一个整体,一般只有一台具有网管能力。这时通过普通端口对交换机进行管理时,就不再使用超级终端了,而是以Telnet或Web浏览器的方式实现与被管理交换机的通信。因为我们在前面的本地配置方式中已为交换机配置好了IP地址,我们可通过IP地址与交换机进行通信,不过要注意,同样只有是网管型的交换机才具有这种管理功能。因为这种远程配置方式中又可以通过两种不同的方式来进行,所以我们也就分别介绍。
1、Telnet方式
Telnet协议是一种远程访问协议,可以用它登录到远程计算机、网络设备或专用TCP/IP网络。Windows 95/98及其以后的Windows系统、UNIX/Linux等系统中都内置有Telnet客户端程序,我们就可以用它来实现与远程交换机的通信。
在使用Telnet连接至交换机前,应当确认已经做好以下准备工作:
·在用于管理的计算机中安装有TCP/IP协议,并配置好了IP地址信息。
·在被管理的交换机上已经配置好IP地址信息。如果尚未配置IP地址信息,则必须通过Console端口进行设置。
·在被管理的交换机上建立了具有管理权限的用户帐户。如果没有建立新的帐户,则Cisco交换机默认的管理员帐户为”Admin“。
在计算机上运行Telnet客户端程序(这个程序在Windows 系统中与UNIX、Linux系统中都有,而且用法基本是是兼容的,特别是在Windows 2000系统中的Telnet程序),并登录至远程交换机。如果我们前面已经设置交换机的IP地址为:61.159.62.182,下面只介绍进入配置界面的方法,至于如何配置那是比较多的,要视具体情况而定,不作具体介绍。进入配置界面步骤很简单,只需简单的两步:
第1步:单击”开始“按钮选择”运行“菜单项,然后在对话框中按”telnet 61.159.62.182“格式输入登录(当然也可先不输入IP地址,在进入telnet主界面后再进行连接,但是这样会多了一步,直接在后面输入要连接的IP的地址更好些),如图8所示。如果为交换机配置了名称,则也可以直接在”Telnet“命令后面空一个空格后输入交换机的名称。
图8
Telnet命令的一般格式如下:
telnet [Hostname/port],这里要注意的是”Hostnqme包括了交换机的名称,但更多的是我们在前面是为交换机配置了IP地址,所以在这里更多的是指交换机的IP地址。格式后面的“Port”一般是不需要输入的,它是用来设定Telnet通信所用的端口的,一般来说Telnet通信端口,在TCP/IP协议中有规定,为23号端口,最好不用改它,也就是说我们可以不接这个参数。
第2步,输入好后,单击“确定”按钮,或单击回车键,建立与远程交换机的连接。如图9所示为与计算机通过Tetnet与Catalyst 1900交换机建立连接时显示的界面。
图9
在图中显示了包括两个菜单项的配置菜单:Menus、Command Line。然后,就可以根据实际需要对该交换机进行相应的配置和管理了。
2、Web浏览器的方式
当利用Console口为交换机设置好IP地址信息并启用HTTP服务后,即可通过支持JAVA的Web浏览器访问交换机,并可通过Web通过浏览器修改交换机的各种参数并对交换机进行管理。事实上,通过Web界面,可以对交换机的许多重要参数进行修改和设置,并可实时查
看交换机的运行状态。不过在利用Web浏览器访问交换机之前,应当确认已经做好以下准备工作:
·在用于管理的计算机中安装TCP/IP协议,且在计算机和被管理的交换机上都已经配置好IP地址信息。
·用于管理的计算机中安装有支持JAVA的Web浏览器,如Internet Explorer 4.0及以上版本、Netscape 4.0及以上版本,以及Oprea with JAVA。 ·在被管理的交换机上建立了拥有管理权限的用户帐户和密码。
·被管理交换机的Cisco IOS支持HTTP服务,并且已经启用了该服务。否则,应通过Console端口升级Cisco IOS或启用HTTP服务。
通过Web浏览器的方式进行配置的方法如下:
第1步:把计算机连接在交换机的一个普通端口上,在计算机上运行Web浏览器。在浏览器的“地址”中栏键入被管理交换机的IP地址(如61.159.62.182)或为其指定的名称。单击回车键,弹出如图10所示对话框。
图10
第2步:分别在“用户名”和“密码”框中,键入拥有管理权限的用户名和密码。用户名/密码对应当事先通过Console端口进行设置。
第3步:单击“确定”按钮,即可建立与被管理交换机的连接,在Web浏览器中显示交换机的管理界面。如图11所示页面为与Cisco Catalyst 1900建立连接后,显示在Web浏
览器中的配置界面。首先看到的是要求输入用户帐号和密码,这时您就输入在上面已设置好的交换机配置超级用户帐号和密码进入系统。
图11
接下来,就可以通过Web界面中的提示,一步步查看交换机的各种参数和运行状态,并可根据需要对交换机的某些参数作必要的修改。
本篇简单介绍了交换机的基本配置方法,下一篇将要对交换机的常见应用--VLAN网络划分、配置方法进行详细介绍。
因篇幅问题不能全部显示,请点此查看更多更全内容