THEBLACKHOLE:
SCATTERER,ABSORBERANDEMITTEROFPARTICLES
N.SANCHEZ
ObservatoiredeParis-DEMIRM,
61Avenuedel’Observatoire,75014PARIS,FRANCE
Abstract
Accurateandpowerfulcomputationalmethodsdeveloppedbytheau-thor,basedontheanalyticresolutionofthewaveequationintheblackholebackground,allowtoobtainthehighlynontrivialtotalabsorptionspectrumoftheBlackHole.Aswellasphaseshiftsandcrosssections(elasticandinelastic)forawiderangeofenergyandangularmomentum,theangulardistributionofabsorbedandscatteredwaves,andtheHawk-ingemissionrates.ThetotalabsorptionspectrumofwavesbytheBlackHoleisknownexactly.Itpresentsasafunctionoffrequencyaremarkableoscillatorybehaviourcharacteristicofadiffractionpattern.Itoscillatesarounditsopticalgeometriclimit(27
Contents
I
INTRODUCTIONANDRESULTS
IIPARTIALWAVEANALYSIS
II.1Absorptioncrosssections.......................
Lowfrequencies............................Highfrequencies............................II.2ElasticScattering...........................
Lowfrequencies............................Highfrequencies............................HighAngularMomenta........................
IIIDIFFERENTIALELASTICCROSSSECTIONIVHAWKINGEMISSIONRATESVREMARKSONAPPROXIMATIONSVICONCLUSIONS
2
3799101011111213141517
THEBLACKHOLE:
SCATTERER,ABSORBERANDEMITTEROFPARTICLES
N.SANCHEZ
ObservatoiredeParis-DEMIRM
61,Avenuedel’Observatoire,75014Paris-FRANCE
IINTRODUCTIONANDRESULTS
Ishallreporthereaboutsomeofmyresultsonthephysicsofblackholesandthedynamicsoffieldsinthevicinityofsuchobjects,describingatthesametime,theBlackHoleunderitstripleaspectofScatterer,AbsorberandEmitterofparticles.
IshallfirstreportabouttheAbsorption,itappearsintheconceptofblackholeitself,thegravitationalfieldbeingsointensethatevenlightcannotescapeofit.Absorptionisoneofthepropertiesthatcharacterizestheblackholedescriptioninclassicalphysics:blackholesabsorbwavesbuttheycannotemitthem.Ifaquantumdescriptionofperturbationfieldsisconsidered,blackholesalsoemitparticles.Forastaticblackhole,thequantumparticleemissionrateH(k),andtheclassicalwaveabsorptioncrosssectionσA(k)arerelatedbytheHawking’sformula(1975,[1])
σA(k)
H(k)=
σA(k)=27πM−2
2
√
27πkM)
√(
3
√
.Theemissionspectrum(Fig.1)doesnotshowanyof
theinterferenceoscillationscharacteristicoftheabsorptioncrosssection,becausethecontributionoftheS-wavedominatestheHawkingradiation.TherapidlydecreaseofthePlanckfactorforkM≥1supressesthecontributionofhigherpartialwaves.
M
Thus,forablackholetheemissionfollowsaplanckianspectrum,givenbyeq.(1),(Fig.1),andtheabsorptionfollowsanoscillatoryspectrum,givenbyeq.(2),(Fig.2).
1086420
0.10.20.30.40.5
262422201816
1
2
3
4
5
6
7
8
M
)(l+
1
.Inwhatconcernstheabsorptionspectrum
itisnotpossibletoassociatearefractionindextotheblackhole.Foropticalmaterials,theabsorptiontakesplaceinthewholevolume,whereasfortheblackhole,ittakesplaceonlyattheorigin.
(8πM)
Itisalsointerestingtocalculatetheangulardistributionofabsorbedwaves.Foritonemuststudytootheblackholeaselasticscatterer.
Thedistributionofscatteredwaves,asafunctionofthescatteringangleθ,hasbeencomputedinawiderangeofthefrequency[3],[4].Itpresentsastrongpeak(∼θ−4)characteristicoflongrangeinteractionsintheforwarddirection,anda“glory”inthebackward,characteristicofthepresenceofstronglyattrac-tiveinteractionsforshortdistances.Forintermediateθ,itshowsacomplicated
6
behaviourwithpeaksanddropsthatdisappearonlyatthegeometrical-opticslimit.
Theangulardistributionofabsorbedwavesisshownin[4].Itisisotropicforlowfrequenciesandgraduallyshowsfeaturesofadiffractionpattern,asthefrequencyincreases.Itpresentsanabsolutemaximumintheforwarddirectionwhichgrowsandnarrowsasthefrequencyincreases.Inthegeometrical-opticslimit,thisresultsinaDiracDeltadistribution.TheanalyticbehaviourexpressesintermsoftheBesselfunctionJ1,asgivenbyeq.(8)below.
Inthecourseofthisresearch,wehavedevelopedaccurateandusefulcompu-tationalmethodsbasedontheanalyticalresolutionofthewaveequation,whichinaddition,haveallowedustodeterminetherangeofvalidityofdifferentapprox-imationsforlowandhighfrequenciesmadebyotherauthors(Starobinsky,Sov.Phys.JETP37,1,1973;Unruh,Phys.Rev.D14,3251,1976),respectively,andbyourselves[5].Itfollowsthattheanalyticalcomputationofelasticscatteringparametersforlowfrequenciesisaratheropenproblem.
Wehavealsoobtainedseveralpropertiesconcerningthescattering,absorp-tionandemissionparametersinapartialwaveanalysis.Theyarerepportedinreferences[2]and[4].Someofthemarealsoreportedinreferences[6]and[7].Theworkpresentedherehasalsoadirectinterestforthefieldandstringquantizationincurvedspace-times,relatedissuesandothercurrentproblems.SeetheConclusionsSectionattheendofthispaper.
IIPARTIALWAVEANALYSIS
Thepartialscatteringmatrixisgivenby
Sl=e2iδlδl=ηl+iβl
Wehavefound([2],[4])thattherealandimaginarypartsoftheBlackHole
functionsofthefrequencyrespectively:phaseshiftsδlareodd
ηl(xs)=−ηl(−xs)
βl(xs)=βl(−xs),xs≡krs=2kM
7
(3)
123
Intermsofthephaseshifts,thepartialelasticandabsorptioncrosssectionsarerespectivelygivenby:
πǫl=
xs
−4βl
(2l+1)(1−e)2
partialabsorptioncrosssection
II.1Absorptioncrosssections
Forallvalueoftheangularmomentuml,theimaginarypartofthephase
shifts,βl(xs),isamonotonicallyincreasingfunctionofxs.
Allβl(xs)arezeroatxs=0andtendtoinfinitylinearlywithxsasxsincreasestoinfinity.Lowfrequencies
[(2l)!][(2l+
2
1)!]2
(4)
WehavefoundforClvaluesinagreementwithStarobinsky’sformulae(Starobin-sky,Sov.Phys.JETP37(1973)1),forxs=0andl=0.However,theStarobinsky’sapproximationisaccurateonlyinasmallneighborhoodofxs=0.Forexample,theratio
β0exact(xs)−C0xs2
Thepresenceofapoleatxs=0forl≥1intheJostfunctionoftheBlackHole([2],[4])meansthatwaveswithverysmallfrequencyandl=0arerepelledoutofthevecinityoftheblackhole.Highfrequencies:
)
xs≫1
(6)
xs3/2
βlasistheasymptoticexpressionderivedwiththeDWBA(DistortedWaveBornApproximation):
βlas(xs)=πxs−1/4ln2−1/16(π/xs)
1/2
π(l+1/2)2−
2
dΩ
=|
isexpressedintermsoftheBesselfunctionJ1as[4]:
dσA(θ)
4xs2
27
∞l=0
2
(2l+1)gl(xs)Pl(cosθ)|
Lowfrequencies:
k
∞
dr
r
0
(
Rl
x
)
xs
x2
,x∗=x+xsln(1−
xs
Forlargexs,xs≫1:ηlexact(xs)=ηlas(xs)+O((
1
2
−xs+
2
π
2
)+
1xs
)
1/2
+O(
1
−2ixs)
xs
).
=−2xsln(
2xs
ηlasistheasymptoticformuladerivedbyusintheDWBA(DistortedWaveBornApproximation)scheme[5].
11
ηlasandηlexactareingoodagreement.Forexample,
η0exact(2.3)=−1.2,η0as(2.3)=−1.18η0exact(2.5)=−1.6,η0as(2.5)=−1.60
Wehave
ηl(xs→∞)→−xsln(2xs)→−∞,forfixedlandxs→∞ηl(xs)→−xsln(l+
1
High-orderpartialwavesgiveanimportantcontri-butiontotheelasticscatteringamplitude.Thisfactleadustostudyηl(xs)forl≥2andfixedxs.Wefound:
ηl(xs)=ηlcoul(xs)+α0(xs)+∆l(xs)
where
ηlcoul(xs)=argΓ(l+1−ixs)∆l(xs)=
α2(xs)α3(xs)α1(xs)++23+O()))2
2
2
,l≫xs
(12)
1
2
)
4)
αl(xs)∼(xs)l+1α0(xs)≃
1
2xs2
Ascouldbeexpected,theleadingbehaviourofηl(xs)forlargelisthesameas
thatoftheCoulombphaseshiftηlcoul.
Thedifference
[ηlexact(xs)−ηlcoul(xs)]=xsf(b)
canbewrittenasxstimesafunctionf(b)oftheimpactparameterb=whichisanalyticatb=0.
(l+1xs
,
Thefactthatηldoesnotvanishesintheinfiniteenergylimitisaconsequenceofthestrongattractivecharacteroftheblackholeinteractionatshortdistances(thetermofthetype−1)intheradialwaveequation).4r2
12
III
DIFFERENTIALELASTICCROSSSEC-TION
Thescatteringamplitude,whosesquaredmodulusgivesthedifferentialelas-ticcrosssection,isgivenby
f(θ)=
∞l=0
(2l+1)
θ4
−
C1(xs)
θ2
+
C2(xs)
xs
C2(xs)=
+
cos(2γ(−))4
4xs21
1+2α1sin(2γ(−))+
1+
186
where
+
4xs2
+
363
288
1
α2
xs4
γ(±)=argΓ(
1
5
xs,
α1∼
3
4
xs3
Forintermediateangles,|f(θ)|2hasacomplexbehaviourwithpeaksand
dropswhichdisappearatthegeometrical-opticslimit.
13
IVHAWKINGEMISSIONRATES
TheenergyemittedbytheblackholeineachmodeoffrequencykandangularmomentumlisgivenbytheHawking’sformula[1]
dHl(k)=
Pl(k)
π
kdk
LetusrecallourfirstanalyticexpressionforthepartialabsorptionratePl(k)(S´anchez,1976)[5].Thisisaformulaforhighfrequencies(krs≫1)obtainedwithintheDWBAscheme:
Pl(k)
krs≫1
=
1−exp(−4πkrs)
1+exp{(2l+1)π[1−
27k2rs2
2l+1
(exp(4πkrs)+1)
(exp(4πkrs)−1){1+exp[(2l+1)π(1−
27k2rs2
predominatesinHawkingradiation.Forexample,themaximaofHl(k)forl=0,1,2areintheratio
1
.1:
453
Forangularmomentahigherthantwo,Hl(k)isextremelysmall.
ThespectrumoftotalemissionhasonlyonepeakfollowingcloselytheS-waveabsorptioncrosssectionbehaviour.Itsmaximumliesatthesamepointthemaximumofσ0(xsmax=0.23).
Thepeaksofσ1andσ2turnouttohavenoinfluenceonH(k).
Inconclusion,Hawkingemissionisonlyimportantinthefrequencyrange
0≤k≤
1
beentakenintoaccount.Withhisapproximation,it
ispossibletofindfortherealpartofthephaseshiftalinearbehaviourinxs(ηl∼alxs),butinaccuratevaluesforthecoefficientalareobtained.
Inthecontextofamassivefield,UnruhincludedtheCoulombinteraction.However,hisapproximationisnotsufficientlyaccuratetogivetherealpartofthephaseshiftatleastforl=0inthezero-masscase.
15
ThediscrepancybetweenUnruh’sapproximationwiththeexactcalculationcanbeexplainedasfollows:inUnruh’sapproach,forr≫rs,alltermsoforderhigherthan(rs
(ξRl)+k+2
2
2k2rs
(r−rs)2
dr
+
1
r2(r−rs)2
−
l(l+1)
4rs
2
rs8
k[r(r−rs)]
1
3
)2ordertermk2rs2
r
VICONCLUSIONS
Accurateandpowerfulcomputationalmethods,basedontheanalyticresolu-tionofthewaveequationintheblackholebackground,developedbythepresentauthorallowtoobtainthetotalabsorptionspectrumoftheBlackHole.Aswellasphaseshiftsandcrosssections(elasticandinelastic)forawiderangeofen-ergyandangularmomentum,theangulardistributionofabsorbedandscatteredwaves,andtheHawkingemissionrates.
ThetotalabsorptionspectrumoftheBlackHoleisknownexactly.Theabsorptionspectrumasafunctionofthefrequencyshowsaremarkableoscil-latorybehaviourcharacteristicofadiffractionpattern.Theabsorptioncrosssectionoscillatesarounditsopticalgeometriclimitwithdecreasingamplitudeandalmostconstantperiod.SuchoscillatoryabsorptionpatternisanuniquedistinctivefeatureoftheBlackHole.Absorptionbyordinarybodies,complexrefractionindexoropticalmodelsdonotpresentthesefeatures.
Forordinaryabsorptivebodies,theabsorptiontakesplaceinthewholemediumwhilefortheBlackHoleittakesplaceonlyattheorigin(r=0).FortheBlackHole,theeffectiveHamiltoniandescribingthewave-blackholeinteractionisnon-hermitian,despiteofbeingreal,duetoitssingularityattheorigin(r=0).Thewellknownunitarity(optical)theoremofthepotentialscatteringtheorycanbegeneralizedtotheBlackHolecase,explicitlyrelatingthepresenceofanonzeroabsorptioncrosssectiontotheexistenceofasingularity(r=0)inthespacetime.
All√partialabsorptionamplitudeshaveabsolutemaximaatthefrequence(l+1k=34M
DWBA(DistortedWaveBornApproximation)fortheBlackHoleasitwasimplementedbythepresentauthormorethantwentyyearsago[5]isanaccuratebetterapproximationforhighfrequencies(krs≫1)tocomputetheabsorption(imaginarypart)phaseshiftsandrates,bothforhigh(l≫krs)andlow(l≪krs)angularmomenta.
Approximativeexpressions(whatevertheybe),forveryhighfrequencies,orforlowfrequenciesdonotallowtofindtheremarkableoscillatorybehaviourofthetotalabsorptioncrosssectionasafunctionoffrequency,oftheBlackHole.TheknowledgeofthehighlynontrivialtotalabsorptionspectrumoftheBlackHoleneededthedevelopmentofcomputationalmethods[2]morepowerfulandaccuratethanthecommonlyusedapproximations.
Theangulardistributionofabsorbedandelasticallyscatteredwaveshavebeenalsocomputedwiththesemethods.
TheconceptualgeneralfeaturesoftheBlackHoleAbsorptionspectrumwillsurviveforhigherdimensional(D>4)genericBlackHoles,andincludingchargeandangularmomentum.TheywillbealsopresentforBlackHolebackgroundssolutionsofthelowenergyeffectivefieldequationsofstringtheoriesandDbranes.TheAbsorptionCrossSectionisaclassicalconcept.Itisexactlyknownandunderstoodintermsofclassicalphysics(classicalperturbationsaroundfixedbackgrounds).(Although,ofcourse,itispossibletorederiveandcomputemag-nitudesfromseveraldifferentwaysandtechniques).
Anincreasingamountofpaper[11]hasbeendevotedtothecomputationofabsorptioncrosssections(“greybodyfactors”)ofBlackHoles,whateverD-dimensional,ordinary,D-braneous,stringy,extremalornonextremal.Allthesepapers[11]dealwithapproximativeexpressionsforthepartialwavecrosssec-tions.Inallthesepapers[11]thefundamentalremarkablefeaturesoftheTotalAbsorptionSpectrumoftheBlackHoleareoverlooked.
References
[1]S.Hawking,“ParticleCreationbyBlackHoles”,Comm.Math.Phys.43
(1975)199.[2]N.S´anchez,“AbsorptionandEmissionSpectraforaSchwarzschildBlack
Hole”,Phys.Rev.D18(1978)1030.
18
[3]N.S´anchez,“WaveScatteringTheoryandtheAbsorptionProblemforaBlack
Hole”,Phys.Rev.D16(1977)937.[4]N.S´anchez,“ElasticScatteringofWavesbyaBlackHole”,Phys.Rev.D18
(1978)1798.[5]N.S´anchez,“ScatteringofScalarWavesfromaSchwarzschildBlackHole”,
J.Math.Phys.17(1976)688.[6]N.S´anchez,“SurlaPhysiquedesChampsetlaG´eom´etriedel’Espace-Temps”,
Th`esed’Etat,Paris(1979).[7]J.A.H.Futterman,F.A.HandlerandR.A.Matzner,“ScatteringfromBlackHoles”,CambridgeUniversityPress,Cambridge,U.K.(1988),andreferencestherein.[8]S.Persides,Int.Jour.Math.Phys.48(1976)165;50(1976)229.[9]A.A.Starobinsky,
37(1973)1).
Zh.Eks.Teor.Fiz.
64
(1973)
48.
(Sov.Phys.-JETP
[10]W.G.Unruh,Phys.Rev.D14(1976)3251.[11]Forexample:
S.S.GubserandI.R.Klebanov,Phys.Rev.Lett.77(1996)4491;J.MaldacenaandA.Strominger,
Phys.Rev.D56(1997)4975;
Phys.Rev.D55
(1997)
861
and
S.S.Gubser,Phys.Rev.D56(1997)4984andhep-th/9706100;
M.CivetiˇcandF.Larsen,Phys.Rev.D56(1997)4994andhep-th/9705192;I.R.KlebanovandS.D.Mathur,hep-th/9701187;
S.Das,A.DasguptaandT.Sarkar,Phys.Rev.D55(1997)12;S.P.deAlwisandK.Sato,Phys.Rev.D55(1997)6181;R.Emparan,hep-th/9704204;
H.W.Lee,Y.S.MyungandJ.Y.Kim,hep-th/9708099.
19
因篇幅问题不能全部显示,请点此查看更多更全内容