foraSingleTrappedParticle
StefanoMancini∗,DavidVitaliandPaoloTombesi
DipartimentodiMatematicaeFisica,Universit`adiCamerino,viaMadonnadelleCarceriI-62032Camerino
andIstitutoNazionaleperlaFisicadellaMateria,Camerino,Italy
(February1,2008)
Weproposeafeedbackschemetocontrolthevibrationalmotionofasingletrappedparticlebasedonindirectmeasurementsofitsposition.Itresultsthepossibilityofamotionalphasespaceuncertaintycontraction,correspondingtocooltheparticleclosetothemotionalgroundstate.
arXiv:quant-ph/9810022v5 14 Feb 2000I.INTRODUCTION
Inrecentyearstherehasbeenanincreasinginterestontrappingphenomenaandrelatedcoolingtechniques[1].Someyearsagoithasbeenshownthat,usingresolvedsidebandcooling,asingleioncanbetrappedandcooleddownneartoitszero-pointvibrationalenergystate[2]andrecently,analogousresultshavebeenobtainedforneutralatomsinopticallattices[3].Thepossibilitytocontroltrappedparticles,indeed,gaverisetonewmodelsinquantumcomputation[4],inwhichinformationisencodedintwointernalelectronicstatesoftheionsandthetwolowestFockstatesofavibrationalcollectivemodeareusedtotransferandmanipulatequantuminformationbetweenthem.Itmayhappenhowever,thatatrappedionthatisafavorablecandidateforquantuminformationprocessingsinceitpossesesahyperfinestructurewithlongcoherencetimes(asforexample25Mg+[5]),isnotsuitableforresolvedsidebandcooling.Insuchcasesitmaybehelpfultohaveanalternativecoolingtechnique,whichcanbeappliedwhenresolvedsidebandcoolingisimpracticaltouse.
Inthispaperwepresentawaytocontrolthemotionofatrappedparticle,whichisabletogiveasignificantphase-space-localisation.Thebasicideaoftheschemeistorealizeaneffectiveandcontinuousmeasurementofthepositionofthetrappedparticleandthenapplyafeedbackloopabletodecreasethepositionfluctuations.Duetothecontinuousnatureofthemeasurementandtotheeffectofthetrappingpotentialcouplingtheparticlepositionwithitsmomentum,feedbackwillrealizeaneffectivephase-spacelocalisation.
Withthisrespecttherearesomeanalogiesbetweenthepresentmethodandresolved-sidebandstimulatedRamancooling[6],whichcanbeviewedasasortoffeedbackscheme.Infact,oneofthetwoRamanlasersperformsaneffectivemeasurementofthevibrationalnumberbychangingtheparticleinternalstateonlyifitisanexcitedvibrationalstate.ThesecondRamanlaserperformsinsteadthefeedbackstep,becauseitputstheparticlebackintheinitialinternalstate,afterhavingremovedavibrationalquantum.Thefeedbackschemeproposedheremeasurestheparticlepositionratherthanitsenergyandtriestoachievecoolingasphase-spacelocalisation,usingtheparticleoscillatorymotiontomixpositionandmomentumquadratures.
AsecondanalogyisgivenbythefactthattheproposedmethodneedsaDopplerpre-coolingstage,asithappensforresolvedsidebandcooling.Infact,theeffectivetrappedparticlepositionmeasurementisrealizedonlyintheLamb-Dickeregime,i.e.whentherecoilenergyismuchsmallerthantheenergyofavibrationalquantum,whichcanbeobtainedonlywhentheparticlehasundergoneapreliminarycoolingstage.Ourschemewillprovidethereforefurtherphasespacelocalisationandcooling.
Thepaperisorganizedasfollows.InsectionIIweshowhowtorealizetheindirectcontinuousmeasurementofthepositionbycouplingthetrappedparticlewithastandingwave.InsectionIIIweshallintroducethefeedbackloop,insectionIVweshallstudythepropertiesofthestationarystateinthepresenceoffeedbackandsectionVisforconcludingremarks.
II.CONTINUOUSPOSITIONMEASUREMENT
Weconsideragenericparticletrappedinaneffectiveharmonicpotential.Forsimplicityweshallconsidertheone-dimensionalcase,evenifthemethodcanbeinprinciplegeneralizedtothethree-dimensionalcase.Thisparticlecanbeaniontrappedbyalinearrf-trap[7]oraneutralatominanopticaltrap[3,8].Ourschemehoweverdoesnotdependonthespecifictrappingmethodemployedandthereforeweshallalwaysreferfromnowontoagenerictrapped“atom”.
Thetrappedatomofmassm,oscillatingwithfrequencyνalongthexˆdirectionandwithpositionoperatorx=
†1/2
x0(a+a),x0=(¯h/2mν),iscoupledtoastandingwavewithfrequencyωb,wave-vectorkalongxˆandannihilationoperatorb.Thestandingwaveisquasi-resonantwiththetransitionbetweentwointernalatomiclevels|+and|−.TheHamiltonianofthesystemis[9]
H=
hω0¯
,whereω∼ωbwillbespecifiedlater,andmakingtherotatingwaveapproximation,h∆¯
thisHamiltonianbecomes
2
H=
2
(2σ−Dσ+−σ+σ−D−Dσ+σ−),
(5)
whereκisthespontaneousemissionrate.Herewehaveneglectedtherecoilandtheassociatedheatingofthevibra-tionalmotion.ThisisreasonableintheLamb-Dickelimitwehaveassumedfromthebeginning,sincetheassociated
heatingrateisgivenbyκ(kx0)2vibrationalquantapersecond,whichisnegligibleforasufficientlysmallLamb-Dickeparameterkx0.Inpracticalsituations,alsootherheatingmechanismsexist,causedbytechnicalimperfectionssuch
2
asthefluctuationsoftrapparametersduetoambientfluctuatingelectricalfieldsintheiontrapcase[7],andduetolaserintensitynoiseandbeam-pointingfluctuationsinthecaseoffar-offresonanceopticaltraps(seeRef.[8]andreferencestherein).Weassumethepresenceofthisheatingduetotrapimperfections,andwedescribeitwiththefollowingterminthemasterequation,characterizedbyaheatingrateγh(see[12])
LhD=
γh
2
†
2aDa−aa†D−Daa†.
(6)
Theheatingrateγhhasnottobetoolarge,inordertostaywithintheassumedLamb-Dickeregime.TheLamb-Dickeconditionalsoimpliesthatthetrappedatomhastobeinitiallypreparedinasufficentlycoldstate,i.e.,aneffectivethermalstatewith,say,ameanvibrationalnumbern0∼10.ThiscanbeobtainedwithapreliminaryDopplercoolingstage,whichisthenturnedoffatt=0andreplacedbytheproposedfeedbackcoolingscheme.Weshallseethatourschemeisabletofurthercoolthetrappedatom,closetothegroundstate,eveninthepresenceofmoderateheatingprocesses.
Theresultingmasterequationfortheinternalandvibrationaldegreesoffreedomis
˙=LhD−iD
2
(2σ−Dσ+−σ+σ−D−Dσ+σ−).
(7)
Letusnowseehowtorealizethecontinuouspositionmeasurement.Ithasbeenrecentlyshownthatwhenexcited
byalowintensitylaserfield,asingletrappedatomemitsitsfluorescentlightmainlywithinaquasi-monochromaticelasticpeak[13].Thefluorescentlightspectrumwasmeasuredbyheterodynedetection.Byimprovingthetechniqueitdoesnotseemimpracticaltogetahomodynedetectionofthesingle-ionfluorescentlight.InRef.[14],itwasshownhowonecouldachievesuchameasurement.Thus,byexploitingtheresonancefluorescenceitcouldbepossibletomeasurethequantityΣϕ=σ−e−iϕ+σ+eiϕthroughhomodynedetectionofthefieldscatteredbytheatomalongacertaindirection[9].Infact,thedetectedfieldmaybewrittenintermsofthedipolemomentoperatorforthetransition|−↔|+as[9]
√(+)
Es(t)=
ηκξ(t),(9)
wherethephaseϕisrelatedtothelocaloscillator,which,sincewehaveassumedtheresonancecondition∆=0,in
thepresentcaseisprovidedbythesamedrivingfieldgeneratingtheclassicalstandingwave.ThesubscriptcinEq.(9)denotesthefactthattheaverageisperformedonthestateconditionedontheresultsofthepreviousmeasurementsandξ(t)isaGaussianwhitenoise[15].Infact,thecontinuousmonitoringoftheelectronicmodeperformedthroughthehomodynemeasurement,modifiesthetimeevolutionofthewholesystem,andthestateconditionedontheresultofmeasurement,describedbyastochasticconditioneddensitymatrixDc,evolvesaccordingtothefollowingstochasticdifferentialequation(consideredintheItosense)
˙c=LhDc−iD
√+
2
(2σ−Dcσ+−σ+σ−Dc−Dcσ+σ−)
κ
(Xρc⊗|+−|−ρc⊗|−+|X),(10)
whereρc=TrelDcisthereducedconditioneddensitymatrixforthevibrationalmotion.Intheadiabaticregime,theinternaldynamicsinstantaneouslyfollowsthevibrationaloneandthereforeonegetsinformationonthepositiondynamicsXbyobservingthequantityΣϕ.TherelationshipbetweentheconditionedmeanvaluesfollowsfromEq.(10)
3
Σϕ(t)c=
χ
+
2κ
[X,[X,ρc]]
∆
sin(kx+φ)bψ−.(15)
Insertingthisequationinto(14),onegetsanequationforψ−whichisequivalenttohavethefollowingeffectiveHamiltonianforthevibrationalmotionoftheatomandthestandingwavemodealone
H=h¯δbb+h¯νaa−¯h
†
†
ǫ2
2∆
bb+h¯νaa−¯h
††
ǫ2
∆
kx(|β|2+β∗b+βb†).
(18)
Shiftingtheoriginalongthexdirectionbythequantityh¯ǫ2k|β|2/∆mν2,onefinallygetsaneffectiveHamiltonian
analogoustothatoftheresonantcase(4)
H=h¯νa†a+h¯χYX,
4
(19)
wherenowχ=−4|β|kx0ǫ2/∆andtheatomicpolarizationσxisreplacedbythestandingwavefieldquadratureY=(be−iφβ+b†eiφβ)/2,whereφβisthephaseoftheclassicalamplitudeβ.Thismeansthatinthiscasethe“meter”isrepresentedbythecavitymode,andthataneffectivecontinuousmeasurementofthepositionofthetrappedatomisprovidedbythehomodynemeasurementofthelightoutgoingfromthecavity.ThismeasurementallowsinfacttoobtainthequantityYϕ=(ae−iϕ+a†eiϕ)/2,whichisanalogoustothequantityΣϕofthepreviousSection.Therefore,allthestepsleadingtoEq.(12)intheprecedingsubsection,canberepeatedhere,withtheappropriatechanges.Inthisnon-resonantcase,Dnowreferstothedensitymatrixofthesystemcomposedbyvibrationalmodeandthestandingwavemodeandthespontaneousemissionterminthemasterequation(7)hastobereplacedbytheformallyanalogoustermdescribingdampingofthestandingwavemodeduetophotonleakage.Thisisequivalenttointerprettheparameterκasacavitymodedecayrateinthiscaseandtoreplaceσ−withb,σ+withb†,andΣϕwithYϕinEqs.(7),(8),(9)and(10).Itisagainreasonabletoassumethatthestandingwavemodeishighlydamped,i.e.κ≫χ,sothatitispossibletoeliminateitadiabatically.Theperturbativeexpansion(10)nowbecomes
χ2
(Xρc⊗|10|−ρcX⊗|01|)Dc=ρc−
κ
χ2
√+
κ2
ηχ
Kρc(t),
(21)
whereτisthetimedelayinthefeedbackloopandKisaLiouvillesuperoperatordescribingthewayinwhichthefeedbacksignalactsonthesystemofinterest.
Thefeedbackterm(21)hastobeconsideredintheStratonovichsense,sinceEq.(21)isintroducedaslimitofarealprocess,thenitshouldbetransformedintheItosenseandaddedtotheevolutionequation(12).Asuccessiveaverageoverthewhitenoiseξ(t)yieldsthemasterequationforthevibrationaldensitymatrixρinthepresenceoffeedback.Onlyinthelimitingcaseofafeedbackdelaytimemuchshorterthanthecharacteristictimeoftheamode,itispossibletoobtainaMarkovianequation[17,18],whichisgivenby
ρ˙=Lhρ−iνaa,ρ−
†
ThesecondtermoftherighthandsideofEq.(22)istheusualdouble-commutatortermassociatedtothemeasurement
ofX;thethirdtermisthefeedbacktermitselfandthefourthtermisadiffusion-liketerm,whichisanunavoidableconsequenceofthenoiseintroducedbythefeedbackitself.
Then,sincetheLiouvillesuperoperatorKcanonlybeofHamiltonianform[17],wechooseitasKρ=−ig[P,ρ]/2[16],whereP=(a−a†)/2iistheadimensionalmomentumoperatorofthetrappedparticleandgisthefeedbackgainrelatedtothepracticalwayofrealizingtheloop.Onecouldhavechosentofeedthesystemwithagenericphase-dependentquadrature;however,itispossibletoseethattheabovechoicegivesthebestandsimplestresult[16].UsingtheaboveexpressionsinEq.(22)andrearrangingthetermsinanappropriateway,wefinallygetthefollowingmasterequation:
χ2
2ηχ2/κ
ρ.(22)
5
ρ˙=−−
ΓΓg
2
2
M∗2aρa−a2ρ−ρa2
N2a†ρa−aa†ρ−ρaa†
gsinϕ
gsinϕ
χ2
γh+
χ2
4ηχ2/κ
i−
4ηχ2/κ
−
1
+iνλ∂λ+2
Γ
=−ΓN|λ|2+
sinϕ(λ∂λ∗+λ∗∂λ)C(λ,λ∗,t)2
Γ
sinϕ(λ∗)2+sinϕλ2C(λ,λ∗,t),44
Γ
(27)
Thestationarystateisreachedonlyiftheparameterssatisfythestabilityconditionthatalltheeigenvalueshave
positiverealpart,whichinthepresentcaseisachievedwhengsinϕ<0.Inthiscasethestationarysolutionhasthefollowingform
1
(28)µ∗λ2,C(λ,λ∗,∞)=exp−ζ|λ|2+
2where
ζ=
N(g2sin2ϕ+4ν2)+gsinϕ(2νIm{M}−gsinϕRe{M})+g2sin2ϕ/2
+i
gsinϕ
4ν2
thatis,thestationarystateisaneffectivethermalstatewithmeanvibrationalnumberN.Thiscanalsobeseenfromthefactthatinthelargeνlimit,onecanconsiderthemasterequation(23)intheframerotatingatthefrequencyν,andneglectingtherapidlyoscillatingterms,oneendsupwithathermalmasterequationgivenbythefirstlineofEq.(23),whosesteadystateisjustthethermalstatewithmeanphononnumberN.
TheexpressionforNgivenbyEq.(24)showsthatitisconvenienttochooseϕ=−π/2togetthesmallestpossiblevaluesforN.Inthiswaythestabilityconditionisalsoautomaticallysatisfied.Then,theminimumvalueforthestationarymeanvibrationalnumberNcanbeobtainedbyminimizingitwithrespecttothefeedbackgaing:the
1/2
optimalvalueforgisgivenbyg=4γh+χ2/4κηχ2/4κandthecorrespondingminimumvalueofNis
Nmin=
1
1+4κγh/χ2
etimesitsmaximumheight.Weseethatthefeedbackproducesarelevantcontractionoftheuncertaintyregion,whichbecomesalmostindistinguishablefromtheregioncorrespondingtothemotionalgroundstate(innerdottedlineinFig.1).Theouterdashedlinecorrespondsinsteadtotheinitialthermalstatewithmeanvibrationalnumbern0=10,preparedbytheDopplerpre-coolingstage.
Intheresonantcaseinwhichtheeffectivepositionmeasurementisrealizedthroughthehomodynemeasurementofthefluorescence,themeasurementefficiencyismuchlowerandgroundstatecoolingbecomesverydifficulttoachieve.However,thispositionmeasurementschemebasedonfluorescencebecomesnecessarywhenonecannotextractthelightoutofacavity,suchasinRef.[13],andonehastousethefluorescentlight.
V.CONCLUSIONS
Wehaveproposedafeedbackschemeabletoachievesignificantcoolingofthemotionaldegreeoffreedomofatrappedparticle.Themethodisbasedonaneffectivecontinuousmeasurementoftheparticlepositionwhichcanberealizedintwodifferentways:byhomodyningeitherthefluorescenceofastrongtransitionordirectlythelightexitingthecavitywhichiscoupledtothetrappedparticle.Whentheefficiencyofthehomodynedetectionisclosetoone,themethodisabletoachievegroundstatecooling.Itisinterestingtonotethat,evenifonlytheparticlepositionismeasuredandthefeedbackischoseninordertodecreasepositionfluctuations,theschemeprovidesaphase-spacelocalisationforallquadratures.ThisisessentiallyduetothefactthatthebareatomHamiltonianh¯νa†amixesthedynamicsoftheatomicpositionandmomentum,sothatthecontinuoushomodynemeasurementactuallygivesinformationsonbothquadratures.Thismodelsharessomepeculiaritieswiththatonewehaveproposedin[20]tocoolthevibrationalmotionofamacroscopicmirrorofanopticalcavity.Thepresentapplicationtoatrappedatomstressestheversatilityofthemethodsusingfeedbackloopsinsystemscharacterizedbytheradiationpressureforceincontrollingthermalnoise.
Itisalsopossibletoseethattheproposedschemeisnotabletoreducethenoisebelowthequantumlimit,i.e.thestationarystatevarianceofagenericmotionalquadraturecannotbemadesmallerthan1/4.ThisisagainaconsequenceofthefreevibrationalHamiltonianh¯νa†a(itisinfactpossibletogetpositionsqueezinginthelimitingcaseν=0[21]).Actually,positionsqueezingcanbeobtainedbyconsideringasuitablemodificationofthepresentscheme[22].
AsconcernsthespecificwayinwhichaparticularfeedbackHamiltoniancouldbeimplemented,theimportantpointistobeabletorealizeaterminthefeedbackHamiltonianproportionaltomomentum.Thisisnotstraightforward,butcouldberealizedbyusingthefeedbackcurrenttovaryanexternalpotentialappliedtotheatomwithoutalteringthetrappingpotential.Ontheotherhand,shiftsintheposition(beingstrictlyequivalenttoalinearmomentumtermintheHamiltonian),areachievedsimplybyshiftingallthepositiondependenttermsintheHamiltonian,inparticularthetrappingpotential.Alternatively,theuseoflaserpulsescouldbeusefulaswell,since,usingatypicallasercoolingscheme,thelightcanexertontheatomaforceproportionaltoitsmomentum.
7
Aswehavealreadyremarked,inprinciplethemodelcouldbeextendedtothethreedimensionalcase.AsconcernsthemodeldiscussedinSec.IIA,oneshouldconsiderthreedifferentinternaltransitions,eachonecoupledwithavibrationaldegreeoffreedom,resonantwiththreeorthogonalstandingwaves.Fortheoff-resonantcasepresentedinSec.IIB,oneshouldonlyconsiderthreeorthogonalstandingwavesfarfromresonanttransitions.
Inconclusion,althoughtheimplementationofthepresentedcoolingmethodviafeedbackcouldbeanhardtask,itcanbeusefulwhenevertheuseofresolvedsidebandcoolingisimpractical.Thepossibilityofhavinganalternativewaytocooltrappedparticlesisparticularlyinterestingforquantuminformationprocessingapplications,becauseitmayhappenthattherequirementofhavingtwohighlystableinternalstatesforquantumlogicoperationsandagoodinternaltransitionforsidebandcoolingcannotbesimultaneouslysatisfied.Withthisrespectothercoolingstrategieshavebeenrecentlyproposed,asforexampletheuseofsympatheticcoolingbetweentwodifferentspeciesofions[5,23].
ACKNOWLEDGEMENTS
ThisworkhasbeenpartiallysupportedbyINFM(throughtheAdvancedResearchProject“CAT”),bytheEuropeanUnionintheframeworkoftheTMRNetwork“MicrolasersandCavityQED”.
P21
X
-2-1
-1-2
12
√
FIG.1.PhasespaceuncertaintycontoursobtainedbycuttingtheWignerfunctionofthestationarystateat1/
因篇幅问题不能全部显示,请点此查看更多更全内容