ORIGINALARTICLE
AbrasivewaterjetmachiningsimulationbySPHmethod
WangJianming&GaoNa&GongWenjun
Received:10September2009/Accepted:4January2010/Publishedonline:29January2010#Springer-VerlagLondonLimited2010
AbstractAbrasivewaterjetmachining(AWJM)isanon-conventionalprocess.Themechanismofmaterialremov-inginAWJMforductilematerialsandexistingerosionmodelsarereviewedinthispaper.Toovercomethedifficultiesoffluid–solidinteractionandextra-largedefor-mationproblemusingfiniteelementmethod(FEM),theSPH-coupledFEMmodelingforabrasivewaterjetmachin-ingsimulationispresented,inwhichtheabrasivewaterjetismodeledbySPHparticlesandthetargetmaterialismodeledbyFE.Thetwopartsinteractthroughcontactalgorithm.Thecreativityofthismodelismulti-materialsSPHparticles,whichcontainabrasiveandwaterandmixtogetheruniformly.Tobuildthemodel,arandomizedalgorithmisproposed.Thematerialmodelfortheabrasiveisfirstpresented.Utilizingthismodel,abrasivewaterjetpenetratingthetargetmaterialswithhighvelocityissimulatedandthemechanismoferosionisdepicted.Therelationshipbetweenthedepthofpenetrationandjetparameters,includingwaterpressureandtraversespeed,etc.,areanalyzedbasedonthesimulation.Theresultsagreewiththeexperimentaldatawell.Itwillbeabenefittounderstandtheabrasivewaterjetcuttingmechanismandoptimizetheoperatingparameters.
KeywordsAbrasivewaterjetmachining(AWJM).Randomizedalgorithm.CouplingSPH/FEM.Abrasivematerialmodels
1Introduction
Abrasivewaterjet(AWJ)cutting,duetoitsvariousdistinctadvantagesoverothercuttingtechnologies,suchasnothermaldistortion,highmachiningversatility,highflexi-bility,andsmallcuttingforces[1],isbeingincreasinglyusedinvariousindustries.
Forabrasivewaterjetcuttingprocessinfluencingbyseveralprocessparameters,suchashydraulic,abrasive,target,andcuttingparameters,etc.,proposingtheappropri-atemodelingforAWJmachiningisaheatstudyfield.Bothanalyticalandempiricalmethodshavebeenused,includingfuzzylogicalgorithms[2]andreactionkinetics[3],toresearchtheAWJmachiningprocess[4].However,bothempiricalmodelsandheuristicapproachesneedextensiveexperimentdata,whichisamajordrawbackduetohighexpenseandlimitedapplicability.Thereareafewliter-atures[5,6]focusedonthenumericalsimulationsoftheimpactprocess,whichoftenusefiniteelementmethod(FEM)withasingleabrasivetocalculatetheerosivewearduringabrasivewaterjetmachining,andtheabrasivewasmodeledasarigidballignoringitsmaterialproperties.Asitisjustamicro-modelingstudywithoutconcludingthefactorsofmachiningprocessorthemechanismoftheAWJmachining.UsingtheFEMmethodtosimulateAWJMprocess,whichisthefluid–solidimpactingproblemsandaccompaniedwithlargedeformation,mayleadtothedistortionofthemeshandwasdiscussedinthearticle[7].Toovercometheabovedifficulties,wedevelopedacoupledmethodofsmoothedparticlehydrodynamic(SPH)
W.Jianming(*):G.Na:G.Wenjun
SchoolofMechanicalEngineering,ShandongUniversity,Jinan250061,China
e-mail:wangjianming@sdu.edu.cnG.Na
e-mail:gaoxiaodou0116@hotmail.com.cnG.Wenjun
e-mail:gwjagassi@yahoo.com.cn
228andFEM.TheappealofSPHforhigh-velocityAWJimpactisthatitisamesh-freemethodandbelongstoLagrangianframe,whichdonotneedmeshconnectivitysoastoallowseveremeshdistortions.BySPHmethod,thecontinuousmaterialisexpressedbyaseriesofparticles,whichcarrysomephysicalquantitiessuchasmassandvelocity.Thischaracterisregularlyadaptedforhydrokineticsproblems.JohnsonandBeisselappliedSPHinhigh-velocityimpact-ingproblemsandgotencouragingresults[8–10].SPHcouldovercomethedefectofFEMandbelongstoLagrangianframedescription,thus,thecomputationwillbemorecompactandautomatic.
SPH-coupledFEmethod-basedmodelingforabrasivewaterjetmachiningsimulationispresentedinthispaper,inwhichtheabrasivewaterjetismodeledbySPHparticlesandthetargetmaterialismodeledbyfiniteelements.Thetwopartsinteractbycontactalgorithmof“nodes-to-surface”inLS-DYNA.Themulti-materialsSPHparticlesmodeling,inwhichtheabrasivesandwatermixtogetheruniformly,isfirstproposed.Therandomizedalgorithmfortheactualmasspercentageoftwomaterialsisused.BasedontheexplicitprogramLS-DYNA,thehybrid-codeofSPHandFEMisconductedtosimulatethemachiningprocess,andthesimulationresultistestedbytheexperimentaldata[11].
2Basictheory2.1BasictheoryofSPH
Insteadofagrid,SPHusesakernelinterpolationto
approximatethefieldvariablesatanypointinadomain.Anestimateofthevalueofafunctionf(x)atthelocationxisgiveninacontinuousformbyanintegraloftheproductofthefunctionandakernel(weighting)functionW(x−x′,h)
Z
hfðxÞi¼
fðx0ÞWðxÀx0;hÞdx0
ð1Þ
Ω
WherehfðxÞiAkernelapproximationhSmoothinglength
x′
Newindependentvariable.
Thekernelfunctionusuallyhasthefollowingproperties:Compactsupport,whichmeansthatitiszeroevery-wherebutonafinitedomaininsidetherangeofthesmoothinglength2h:WðxÀx0;hÞ¼0
for
xÀx0
!2h
ð2Þ
IntJAdvManufTechnol(2010)50:227–234
Normalized:Z
WðxÀx0;hÞdx0¼1
ð3Þ
TheserequirementsensurethatthekernelfunctionreducestotheDiracdeltafunctionwhenhtendstozero:
hlim!0
WðxÀx0;hÞ¼dðxÀx0;hÞð4Þ
Andtherefore,itfollowsthat:
hlim!0
hfðxÞi¼fðxÞð5Þ
Ifthefunctionf(x)isonlyknownatNdiscretepoints,theintegralofEq.1canbeapproximatedbyasummation:
Z
hfðxÞi¼
fðx0
ÞWðxÀx0
;hÞdx0
%XNmjfÀxÁÀ
0ÁjWxÀxj;hΩ
j¼1ri
j
ð6Þ
Wheremj/ρjisthevolumeassociatedtothepointjor
particlej.
Equation7constitutesthebasisofSPHmethod.Thevalueofavariableataparticle,denotedbysubscripti,iscalculatedbysummingthecontributionsfromasetofneighboringparticles(Fig.1),denotedbysubscriptjandforwhichthekernelfunctionisnotzero:
hfðxXNmiÞi¼
jfÀxÁÀ
Àx0ÁjWxij;hið7Þ
j¼1rj
2.2Variablesmoothinglength
Iflargedeformationsoccur,particlescanlargelyseparatefromeachother.Ifthesmoothinglengthremainsconstant,theparticlespacingcanbecomesolargethatparticleswill
Fig.1Setofneighboringparticles
IntJAdvManufTechnol(2010)50:227–234notinteractanymore.Ontheotherhand,incompression,toomanyparticlesmightenterintheneighboringofeachother,whichcanslowdownthecalculationsignificantly.Therearemanywaysdealingwithhinwhichthenumberoftheneighboringparticlesremainsconstantrelatively.Thesimplestapproachistoupdatethesmoothinglengthaccordingtotheaverageddensity
1h¼hr0
0dr
ð8Þ
Whereh0Initialsmoothinglengthρ0InitialdensityρCurrentdensity
d
Thenumberofdimensionsoftheproblem.
Benzsuggestedanothermethodtoevolvethesmoothinglength,whichtakesthetimederivativeofthesmoothingfunctionintermsofcontinuityequationdh1hdrdt¼Àdrdt
ð9Þ
Equation9canbediscretizedusingtheSPHapprox-imationsandcalculatedwiththeotherdifferentialequationsinparticles.
2.3CoupledSPHwithFEA
ThecouplingSPHwithFEAisimplementedbymeansofthecontactalgorithmof“CONTACT_ERODING_NODES_TO_SURFACE”inLS-DYNA.ThecouplingprocessisshowninFig.2:theleftpartrevealsthecomputationprocessofSPHandtherightpartindicatestheFEAprocess[12–14].
3Modelingdescription
AnAWJimpactingaductilemetalplatewillbemodeledandsimulatedtoinvestigatethemachiningmechanismandparametersinfluence,includingjetvelocityandtraversespeedetc.Themodelparameterscomefromtheexperi-mentaldata[11]tobeconvenientforcomparisons.Thetargetwasa3-Dmetallicblock(CarbonsteelAISI1018).TheAWJcuttingconditionislistedinTable1.Inthissection,modelingmethod,materialmodelsandSPHparticlesmodelingfortwokindsofmaterialsarediscussed.3.1Modelingmethod
ThecoupledSPH/FEMmethodisusedforabrasivewaterjetmachiningsimulation.Theabrasivewaterjetis
229
Fig.2CouplingSPHwithFEA
modeledbySPHparticlesandthetargetmaterialismodeledbyfiniteelements.SPHcanbeseenasaspecialelementandisembeddedby“ELEMENT_SPH’’inLS-DYNA,wheretheSPHelementiscontrolledbynode(particle)numberandnode(particle)mass,andthetwopartsareinteractedbycontactalgorithm.Theparticleforceimposesonthesurfaceoffiniteelementbycontacttypeof‘‘CONTACT_ERODING_NODES_TO_SURFACE’’inLS-DYNA,wheretheslavepartisdefinedwithSPHparticlesandthemasterpartisdefinedwithfiniteelements.However,thedifficultyoftheSPHparticlesmodelingisthatitcontainstwokindsofmaterialparticles,abrasiveandwater,andanewalgorithmisproposedtoresolvetheprobleminthefollowingsubsection.3.2Materialmodels3.2.1Watermaterialmodels
ThemodelingforwaterisbasedonanSPHformulationofmovement,thewatermaterialmodelleadstotheselectionoftheNull-MaterialmodelinLS-DYNA,whichallowsequationsofstatetobeconsideredwithoutcomputing
Table1AWJcuttingconditionsNo.Parameter
Value1Waterjetpressure,P(Pa)100–350
2Waterjetnozzle,dn(mm)0.333Traverserate,u(mm/min)234Abrasiveflowrate,ma(g/s)2.565Standoffdistance,S(mm)36AbrasivemeshNo.(garnet)807
Mixingtubediameter,dm(mm)
1.02
230deviatoricstressesandaccordswiththehydrodynamicbehaviorlaw.WeusetheMie–GrueisenequationofstateforthewatermaterialmodelsinEq.10(refertoRef.[15]),anditscoefficientsareshowninTable2(refertoRef.[16].)
rÂÀgÁÃP¼hOC2m1þ1ÀO2mÀa2m21ÀðS1À1ÞmÀS2mm3
i2þðgOþamÞmþ1ÀS2ðmþ1Þ2ð10Þ
3.2.2Abrasivematerialmodels
ThemodelingfortheabrasiveisalsobasedonanSPHformulationofmovement.TheNull-Materialmodelisusedforabrasivematerialtoo.Consideringthematerialbehaviorofabrasive,thelinearpolynomialequationofstateisproposed,whichdefinestherelationshipbetweenpressureanddensity,anditisderivedfromRefs.[17].ThePvs.ρrelationshipisdefinedas
P¼C2
0ðrÀrmixÞ
ð11Þ
WhereC0Speedofsoundofsolidabrasive
ρmixTheinitialincompactabrasivedensitywhichincludessomeair
ρ
Thecurrentabrasivedensitywhichincludessomeair
And
rmix¼ð1Àa0Þraþa0rair
ð12Þ
aV0¼airVð13Þ
WhereρaThedensityofsolidabrasiveρairThedensityofairVairThevolumeoftheairV
The
totalvolume
Table2ValuesofthecoefficientsinMie–GrueisenequationusedforwaterNO.Parameter
Value1Velocityofsound,C(m/s)1,480
2Grueisengamma,y00.49343volumecorrection,a1.3974Coefficient,S12.565Coefficient,S2−1.9866Coefficient,S30.22867
Density,ρ0(kg/m3)
1,000
IntJAdvManufTechnol(2010)50:227–234
TransformtheEq.11totheformofthelinear
polynomialequationofstate,whichisexpressedas
P¼aÀþbÁ
1mþa2m2þa3m3þb1m2m2þb3m3r0eð14ÞWherem¼
rrÀ1
ð15Þ
mix
SubstitutingEq.15intoEq.11,wecangainthefinallinearpolynomialequationofstateoftheabrasive:
P¼C2
0rmixm
ð16Þ
WhereC0isthespeedofsoundofsolidabrasive,itsvalueis9.03km/sandcanbeobtainedfromRef.[18].3.2.3Targetmaterialmodels
Themetallictargetisconsidertobekinematichardeningmodel,whosepropertiesparametersarelistedinTable3.Innumericalsimulation,theremovalofelementmethodisusedtoimitatethecrackgrowthandmaterialfailure,andthecriterionofmaterialfailureisspecifiedinthematerialmodel.Totheplastichardeningmodelfortarget,theplasticfailurestrainissetasacriteriontoexaminetheprobabledamagedzone.ThisstrategywasalsoadoptedinRef.[19].3.3SPHparticlesmodelingfortwokindsofmaterialsusingtherandomizedalgorithm
Tomodelthetwomaterialsofabrasiveandwater,theactualmasspercentageoftwomaterialsintheSPHparticlesmodelingisthekeypoint.Anewwaytoachievetheparticlesmodelingisproposedinthispaper.Firstly,thevolumetricflowratesoftheabrasiveandwateraccordingtotheirmassflowratearecalculated;secondly,basedonthevolumetricflowratesofthetwomaterials,thevolumepercentageofeachmaterialcanbedetermined,thevolumepercentagedeterminestheparticlenumbersoftwomaterialsandthediameterofsingleSPHparticleisdeterminedaccordingtoabrasivesizeintheexperiment.Consequently,thewholenumberofSPHparticlesisgained.Finally,the
Table3MaterialpropertiesfortargetmaterialsNo.Parameter
Value1Materialdensity,ρ3(kg/m3)7,8602Elasticitymodule,E(GPa)2103Poisson'scoefficient,v0.2844Yieldstress,σy(MPa)2605Tensilestrength,σb(MPa)3506
Failurestrain,ε
0.33
IntJAdvManufTechnol(2010)50:227–234Fig.3Flowchartforrandomizedalgorithm
randomizedalgorithmisutilizedtorealizethepercentageoftwokindsofSPHparticlenumbersandtheirdistribution.ThealgorithmflowchartisshowninFig.3.Withtheirparticlenumbersanddensity,theSPHparticlesincludingtwokindsofmaterialspropertiesareestablished,whichcanbeseeninFig.4.Theblueparticlesdenotethematerialsofabrasiveandthegreenonesrepresentthewater.
Fig.4SPHparticlesfordifferentmaterialdeterminedbyrandomizedalgorithm
231
Fig.5SPH/FEAmodelforAWJsimulation.aInitialmodel.b,c,dAWJMsimulationresultsatdifferenttime
4Simulation,numericalresult,anddiscussionsAccordingtotheexperimentalconditions[11],thecarbonsteelAISI1018ischosenastheworkpiecematerialfortheexperiment.Thedimensionofthesampleis:100mminlength,13mminwidth,and65mminheight.TheAWJ
Fig.6RelationshipbetweentheAWJvelocityVeandthepressureP
232
Fig.7Erosionprocessinthecentriccross-sectionoftarget
IntJAdvManufTechnol(2010)50:227–234
conditionsusedinthisstudyarelistedinTable1.Amodelofabrasivewaterjetmachiningmodeliscreatedanditssimulationresultsarecomparedwiththeexperimenttovalidatethecorrectionofthemodeling.ThemodelingmethodisdepictedinSection3,theabrasivewaterjetismodeledbySPHparticleswithabrasiveandwater,thetargetmaterialismodeledbyfiniteelements,whichisshowninFig.5a.Theabrasivewaterjethasthediameterof1.02mmandtheheightof76mm,thestand-offdistanceis3mm.Thereareatotalof2,399SPHparticlesinthemodel.ThediameterofasingleSPHparticleisdeterminedaccordingtoabrasivesizeintheexperiment.TheamountanddistributionofSPHparticlesisdeterminedbytherandomizedalgorithm.Thetargetmodelisinthesizeof100×13×65mm,meshedbyeight-nodesbrickelement,thenumberofelementsis11,960withthenodesof30,184.Thenon-reflectingconditionsareadoptedontheboundaryoftargettoeliminatethereflectionofstresswaves,bywhichtheinfiniteboundaryconditionscanbesatisfied.TheSPHparticlesandtargetelementsareinteractedbycontactalgorithm.TheinitialvelocityofSPHparticles,VeisdeterminedaccordingtothewaterpressureP,varyingfrom100to350MPainTable1,therelationshipbetweenVeandPisshowninFig.6.TheVeisanimportantparameterforthemodelanditcanbeapproximatedbythemomentumtransferequationbe-tweenincomingandexitofabrasivewaterjetnozzle[20,21].ThetraversespeeduisalsogiventotheSPHparticles
Fig.8VariationofcutdepthhwithpressureP
Fig.9Relationshipbetweenjettraverserateandthedepthofpenetration,ma=0.45kg/min
IntJAdvManufTechnol(2010)50:227–234asanotherinitialvelocity.Figure5b,c,darethesimulationresultsatdifferenttimesundera100-MPapressure.
Figure7showsthecentriccross-sectionoftheimpactareaatdifferenttimeunderthepressure100MPa.Theplasticdeformationwasfoundtobelocalizedintheimpactarea.Itshowsthatthedepthofcutincreasesasthetimeincreasing.Asaresult,theplasticdeformation,intheformofacrater,significantlyincreasesuptoitsmaximumdepthatthetimet=255μs.
Figure8showstheeffectofthepressureonthecutdepthinAWJM.Ingeneral,thedepthofpenetrationincreaseswithwaterpressure,asmoreenergywillbeabletoremovemorematerial.Thisincreaseisalmostinalinearformatinitialstage,andasthewaterpressurefurtherincreases,therateofincreasedeclines,whichisduetothefactthatahigherwaterpressuretendstoopenawiderkerfwhichwillhaveanegativeeffectonthedepthofpenetration[22].Comparingthesimulationresultswiththeexperimentdata[11],thesimulationresultsappeartobeabletorepresentthistrendverywellatwaterpressureupto250MPa.Italsoshowsagoodagreementwiththeexperimentatawaterpressure350MPathoughitoverestimatesthedepthofpenetrationinsomecases.Thus,themodelcanbeconsideredtobevalidbyexperimentforwaterpressureupto350MPa.
Inordertostudytheinfluenceofthetraverserate,webuildanothermodelbasedontheexperimentdata[23],whichissimilartotheexperiment[11]excepttheabrasivemassflowrateandjettraversespeed.FromFigs.8and9,wecanseethedifferentcutdepthatthesamepressureintwoexperiments.Figure9alsoshowsthatthedepthofpenetrationdecreaseswiththeincreaseofjettraverserate.Thisisduetoseveralfactors:first,asthetraversespeedincreases,thenumberofparticlesimpingingonagivenexposedtargetareadecreases,whichinturnreducesthematerialremovalrate.Second,Momberetal.[24]havefoundthatthedampingandfrictioneffectinthejetdecreasesasthejetexposuretimedecreases(orthejettraverserateincreases).Thus,theincreaseinthejettraversespeedwillreduceenergylossofparticlesandimprovethematerialremovalrate.Third,ithasbeenreported[22]thatwithafastertravelofthejet,fewerparticleswillbeabletostrikeonthetargetmaterialandopenanarrowerslot.Consequently,asaresultofthereducingenergylossandthenarrowingkerfwidthatahightraversespeed,thedeclinerateofthepenetrationdepthisreducingandthecurvesinFig.9tendtoflattenasthetraversespeedincreases.
5Conclusions
1.ThispaperpresentsacoupledSPH/FEMmethodto
simulatetheabrasivewaterjetmachining.Themodel
233
dealswithfluid–solidinteractionandthematerialmodelofabrasiveisfirstproposed.TheSPHparticlemodelingfortwokindsofmaterialisalsoproposed.Theabrasivewaterjetmachiningissimu-latedsuccessfully.
2.Basedonthetestdata,themodelhasbeenshowntobe
abletoprovideadequateestimationofthecuttingperformanceandmightbeusedforprocesscontrolaswellasoptimizingtheoperatingparameters.
3.Thegoodagreementbetweensimulationresultsandthe
experimentaldatahaveconfirmedthecorrectnessandcredibilityofthemodel.
AcknowledgmentsTheresearchteamwouldliketoacknowledgethefinancialsupportbytheNaturalScienceFoundationofShandongProvince,China(No.Y2007A07).
References
1.JurisevicB,BrissaudD,JunkarM(2004)Monitoringofabrasivewaterjet(AWJ)cuttingusingsounddetection.IntJAdvManufTechnol24:733–737
2.KovacevicR,FangM(1994)Modelingtheinfluenceoftheabrasivewaterjetcuttingparametersonthedepthofcutbasedonfuzzyrules.IntJMachToolsManuf34(1):55–72
3.MomberAW(1995)Ageneralizedabrasivewaterjetcuttingmodel.Proceedingsofthe8thAmericanWaterJetConference8:359–371
4.ParikhPJ,LamSS(2009)Parameterestimationforabrasivewaterjetmachiningprocessusingneuralnetworks.IntJAdvManufTechnol40:497–502
5.EltobgyMS,NgE,ElbestawiMA(2005)Finiteelementmodelingoferosivewear.IntJMachToolsManuf45:1337–13466.ManiadakiK,KestisT,BilalisN,AntoniadisA(2007)Afiniteelement-basedmodelforpurewaterjetprocesssimulation.IntJAdvManufTechnol31:933–940
7.MaL,BaoRH,GuoYM(2008)WaterjetpenetrationsimulationbyhybridcodeofSPHandFEA.IntJImpactEng35:1035–428.JohnsonGR,BsisselSR(1996)NormalizedsmoothingfunctionsforSPHimpactcomputations.IntJNumerMathEng39:2725–2741
9.JohnsonGR,StrykRA,BeisselSR(1996)SPHforhighvelocityimpactcomputations.ComputMethodsApplMechEng139:347–373
10.JohnsonGR,BsisselSR,StrykRAA(2000)Generalizedparticle
algorithmforhighvelocityimpactcomputations.ComputMech25:245–256
11.HassanAI,ChenC,KovacevicR(2004)On-linemonitoringof
depthofcutinAWJcutting.IntJMachToolsManuf44(6):595–605
12.CampbellJ,VignjevicR,LiberskyL(2000)Acontactalgorithm
forsmoothedparticlehydrodynamics.ComputMethodsApplMechEng184(1):49–65
13.JohnsonGR(1994)LinkingofLagrangianparticlemethodsto
standardfiniteelementmethodsforhighvelocityimpactcomputations.NuclearEngDes150:265–274
14.AttawaySW,HeinsteinMW,SwegleJW(1994)Couplingof
smoothparticlehydrodynamicswiththefiniteelementmethod.NuclearEngDes150:199–205
234
15.LS-DYNAKeywordUser’sManual(2005)LivemoreSoftware
TechnologyCorporation
16.SteinbergDJ(1987)Sphericalexplosionsandtheequationofstate
ofwater.LawrenceLivermoreNationalLaboratory,Livermore,CA17.GrujicicM,PanduranganB,QiaoR,CheeSemanBA,RoyWN,
SkaggsRR,GuptaR(2008)Parameterizationoftheporous-materialmodelforsandwithdifferentlevelsofwatersaturation.SoilDynEarthquEng28(1):20–35
18.GwanmesiaGD,ZhangJ,DarlingK,KungJ,LiBS,WangLP,
NeuvilleD,LiebermannRC(2006)Elasticityofpolycrystallinepyrope(Mg3Al2Si3O12)to9GPaand1000°C.PhysEarthPlanetIn155(3-4):179–190
19.BitterJGA(1993)Astudyoferosionphenomena:partI.Wear6:5–21
IntJAdvManufTechnol(2010)50:227–234
20.MEITobgy,EGNg,MA(2007)Modelingofabrasivewaterjet
machining:anewapproach.CIRPAnnals-ManufacturingTechnology21.HashishM(1993)Pressureeffectsinabrasivewaterjet(AWJ)
machining.JEngMaterTechnol11:221–228
22.WangJ(1999)Abrasivewaterjetmachiningofpolymermatrix
composites—cuttingperformance,erosiveprocessandpredictivemodels.IntJAdvManufTechnol15:757–768
23.PaulS,HoogstrateAM,VanL,KalsHJJ(1998)Analyticaland
experimentalmodelingofabrasivewaterjetcuttingofductilematerials.JMaterProcessTechnol73:189–199
24.MomberAW,MohanRS,KovovacevicR(1999)On-lineanalysis
ofhydro-abrasiveerosionofpre-crackedmaterialsbyacousticemission.TheoretApplFractMech31:1–17
因篇幅问题不能全部显示,请点此查看更多更全内容