Atlantis, Paradise Island, Bahamas
FrC13.6
Stabilizinglinearsystemswithsaturation
throughoptimalcontrol
RafalGoebel
Abstract—Weconstructacontinuousfeedbackforasatu-ratedsystemx˙(t)=Ax(t)+Bσ(u(t)).Thefeedbackrendersthesystemasymptoticallystableonthewholesetofstatesthatcanbedrivento0withanopen-loopcontrol.Trajectoriesoftheresultingclosed-loopsystemareoptimalforanauxiliaryoptimalcontrolproblemwithaconvexcostandlineardynam-ics.Thevaluefunctionfortheauxiliaryproblem,whichweshowtobedifferentiable,servesasaLyapunovfunctionforthesaturatedsystem.Relatingthesaturatedsystem,whichisnonlinear,toanoptimalcontrolproblemwithlineardynamicsispossiblethankstothemonotonestructureofsaturation.
Beforeoutliningourapproachtotheproblem,westatethemainresult:
Theorem1.1:(stabilizingfeedback).Considerthesystem
x˙(t)=Ax(t)+Bσ(u(t))
(2)
I.INTRODUCTIONANDMAINRESULT
Globalasymptoticstabilizationofalinearsystemwith
saturatingactuators
x˙(t)=Ax(t)+Bσ(u(t))
(1)
underassumptions(A1)and(A2).LetX0bethesetof
Rnforwhichthereexistsapiecewisecontinuousallx0∈I
controlu:[0,+∞)→IRksuchthatthesolutionof(2)
Rn×nbeanywithx(0)=x0convergesto0.LetQ∈I
symmetricandpositivedefinitematrix.
Then,thereexistsacontinuousmappingF:X0→IRkandaconvex,positivedefinite,anddifferentiablefunction
Rsuchthat,forx0∈X0,thesolutionx(·)toV:X0→I
x˙(t)=Ax(t)+Bσ(F(x(t)))
withx(0)=x0satisfies
1d
V(x(t))≤−x(t)TQx(t)(4)dt2
sothatx(t)→0ast→+∞.
Themaintoolinourapproachisthefollowinglinear-convexregulatorproblem:
∞
1
x(t)TQx(t)+r(w(t))dtmin
20
(5)LCR(x0):
s.t.x˙(t)=Ax(t)+Bw(t),
x(0)=x0.Thisproblemhasnosaturationbutinformationaboutσisrepresentedthroughtheconvexpenaltyfunctionr.Morespecifically,under(A2),thereexistsaconvexfunctions:IRk→IRwiths(0)=0andwiththegradient∇s=σ.Thenristakentobetheconvexfunctionconjugatetosinthesenseofconvexanalysis,seeRockafellar[11].WeexplainthisindetailinSectionII.
Thestabilizingfeedbackforthesaturatedsystem(1)willturnouttobeverycloselyrelatedtotheoptimalfeedbackfortheLCR.In(5)thecontrolvariableisdenotedw(·)todistinguishitfromthecontrolu(·)in(1)–thesearenotthesame.Theoptimalvaluefunctionfor(5)willbetheLyapunovfunctionmentionedinTheorem1.1.
IntroducingaLCRasanauxiliaryoptimalcontrolprob-lemisanaturalidea.Feedbacksstabilizingalinearsystemx˙(t)=Ax(t)+Bu(t)canbefoundwiththehelpofaLQRproblem.Whenσin(1)isthestandardsaturation,thatisσi(ui)equalsuiif−1≤ui≤1,−1ifui<−1,and1ifui>1,onecanconsideraLQRwithaconstraint|ui|≤1.SuchconstrainedLQRcanbeequivalentlywritteninthe
(3)
cannot,ingeneral,beachievedwithalinearfeedback.Moreover,ifaneigenvalueofAhasapositiverealpartandσisbounded,thesetX0consistingofallstatesthatcanbedrivento0withanopenloopcontrolwillnotequaltothewholestatespace.Ifsucheigenvaluesareexcluded,continuousfeedbacksgloballystabilizing(1)existundermildassumptionsonσ,asshownbySontagandSussmann[15]andSontag,Sussmann,andYang[16].Alsothen,semiglobalstabilizationcanbeachievedwithlinearfeedbackpossessingadditionalpropertieslikerobustnessanddisturbancerejection,seeSaberi,Lin,andTeel[14].Forthegeneralcase,muchworkhasbeendevotedtoestimatingX0andtosemiglobalstabilizationonX0(thatis,toconstructingfeedbackswhichstabilize(1)onanyapriorigivencompactsubsetofX0),seeHuandLin[10]andthenumerousreferencestherein.ApositiveresultonsemiglobalstabilizationwithacontinuousfeedbackofalinearsystemunderbothinputandstateconstraintswasrecentlyshownbyStoorvogel,Saberi,andShi[17].
Tosummarize,theexistenceofacontinuousfeedbackthatrenders(1)asymptoticallystableonX0hasnotbeenpreviouslyestablished.Weproveithere,assuming:
Rn×k,is(A1)Thepair(A,B),whereA∈IRn×n,B∈I
controllable.
Rkhastheform(A2)Thesaturationfunctionσ:IRk→I
σ(u)=(σ1(u1),σ2(u2),...,σk(uk)),
Rwhereσ(0)=0,andeachσiisnondecreasingonI
andstrictlyincreasingonaneighborhoodof0.
Forafullversion,seeGoebel[6]
CenterforControlEngineeringandComputation,UniversityofCalifor-nia,SantaBarbara.Currentaddress:P.O.Box15172,Seattle,WA98115.
rafal@ece.ucsb.edu
0-7803-8682-5/04/$20.00 ©2004 IEEE5517
LCRform(5),withrbeingquadraticifusatisfiestheconstraint,andequalto+∞otherwise(thisisawell-knowntechniqueinoptimization).TheuseofvaluefunctionsofauxiliaryproblemsasLyapunovfunctionsispossibleforgeneralnonlinearsystems,andClarke,Ledyaev,Rifford,Stern[4].Theexpectedlackofdifferentiabilityofvaluefunctionsforsuchgeneralproblems,andtheconsequentlackofcontinuityofoptimalfeedbacks,wereapartofthemotivationforanalternateapproachtostabilizationofasaturatedsystemin[16].
ThespecialstructureofLCRhasimportantconsequencesforthevaluefunctionV(x0)definedastheoptimalvaluein(5).Mostimportantly,Visaconvexfunction.Itispositivedefinite,hasfinitevaluesontheopenandconvexsetX0whileV(x0)=+∞ifx0∈X0,anditssublevelsets{x|V(x)≤α}arecompactforeachα≥0.Finally,weproveitisdifferentiableonX0,andthencontinuityof∇VonX0(whichwillbethekeytocontinuityofthestabilizingfeedbackfor(1))followsfromageneralpropertyofconvexfunctions.DetailsareprovidedinSectionIII.
WiththedifferentiabilityofVestablished,standarddynamicprogrammingargumentsshowthattheoptimalfeedbackfortheLCRis
w=FLCR(x)=∇s(−B∗∇V(x)).
Equivalently,w=argmaxw−∇V(x)TBw−r(w).Optimaltrajectoriesx(·)resultingfromapplyingthisop-dV(x(t))≤timalfeedbacktothelinearsystemsatisfydt1−2x(t)TQx(t),andhencex(t)→0ast→∞.
Now,therelationshipbetween(1)andLCRshouldbecomeclear.Since∇s=σ,thenonsaturatedlinearsystemwiththefeedbackw=∇s(−B∗∇V(x))isexactlythesameasthesaturatedsystem(1)withthefeedback
u=F(x)=−B∗∇V(x).
ThismeansthatFisastabilizingfeedbackforthesaturatedsystem.Moreover,thevaluefunctionforLCRservesasaclassicalLyapunovfunctionforthesaturatedsystem.WemakethispreciseinSectionIV.
II.SATURATIONFUNCTIONSASGRADIENTS
Thekeytoourapproachisexpressingthesaturationfunctionσofthesaturatedlinearsystem(1)asagradientofaconvexfunction.AstandardreferencefortheconvexanalysisfactsweusebelowisthebookbyRockafellar[11].Example2.1:Letσ:IR→IRbeacontinuousandnondecreasingfunction,withσ(0)=0.Then
u
σ(t)dts(u)=
0
12
δu2if|u|<,by−δu−1isboundedbelowby22δ2
ifu≤−,andbyδu−12δif Statementsjustmadecanbeeasilyverifiedforthestandardsaturationfunctionσ:IR→[−1,1],whichisthederivativeofthefollowingconvexfunction: ⎧ foru<−1,⎨−u−1212 (6)s(u)=ufor−1≤u≤1, ⎩21for1 k Thenσ=∇sfors(u)=i=1si(ui),thisisofcourseaconvexfunction.Growthofscanbeanalyzedintermsof Rkthatofσi’s.Inparticular,sisstrictlyconvexaround0∈I ififandonlyifeachσiisstrictlyincreasingaround0∈IR.Now,weexplainhowtheconvexfunctionr,representingthecontrolcostinthelinear-convexregulator(5),isrelatedtoσ.Givenaconvexfunctionswith∇s=σands(0)=0,wesetrtobetheconvexfunctionconjugatetosinthesenseofconvexanalysis: r(w)=supwTu−s(u).(7) u∈IRk Thisfunctionisalwaysconvexandlowersemicontinuous. Itneednotbefiniteeverywhere–forsomew,wemayhaver(w)=+∞.Also,rneednotbedifferentiable–it’ssubdifferential∂ristheset-valuedinverseof∇s(whichequalsσ,andneednotbeinvertibleintheclassicalsense).Inmanycasesofpracticalinterest,rcanbefounddi-k rectly.First,notethatifs(u)=i=1si(ui)asinExample k 2.2,bydefinition(7)wehaver(w)=i=1ri(wi),whereriistheconvexconjugateofsi.Thatis,rcanbefoundcomponentwise.Wenowgivesomeexamples. Example2.3:(standardsaturation).Considerthestan-dardsaturationσ,shownbelowongraph(b).Thefunctionsgivenby(6),andshownbelowongraph(a),canbeusedtocalculaterdirectlyfromthedefinition(7).Alternateapproachistolookattheset-valuedinverseofσ,equalto∂r,whichisshownongraph(c).Then,itremainsto“integrate”∂rtoobtainr,shownongraph(d). (a)(b)definesadifferentiableconvexfunctions:IR→IR,with s(0)=0,s≥0,and,ofcourse,s=σ.Otheroftenassumedpropertiesofσreflectinthoseofsasfollows:-Ifσ(u)=0onlyforu=0,sispositivedefinite. u) -Ifliminfu→0σ(u>0–equivalently,ifforsome>0,δ>0,wehaveuσ(u)≥δu2for|u|<–thens(u) (c)(d)5518 Thesubdifferential∂risgivenbyr(w)=∅ifw<−1,r(−1)=(−∞,1],r(w)=wfor−1 12 wforw∈[−1,1], r(w)=2+∞forw∈[−1,1]. √ Example2.4:Considerσ(u)=u/u2+1,whichisa√ derivativeofs(u)=u2+1−1.Theconjugatercanbefoundthrough(7).Alternatively,σ−1(w)=r(w)=√wforw∈(−1,1),whileforw∈(−1,1),σ−1(w)=1−w2r(w)=∅.Then,r(w)canbefound,forany√w∈[−1,1], byintegratingr.Thisleadstor(w)=1−1−w2on[−1,1],whiler(w)=+∞forw∈[−1,1].Graph(a)showss,(b)showsσ,(c)displaysσ−1,andrison(d). (a)(b)III.THEVALUEFUNCTIONFORLCR Thevaluefunctionofthelinear-convexregulator, ⎧∞⎫ 1T⎪⎪⎪x(t)Qx(t)+r(w(t))dt⎪⎨⎬20 (8)V(x0)=min s.t.x˙(t)=Ax(t)+Bw(t),⎪⎪⎪⎪⎩⎭ x(0)=x0,withtheminimizationcarriedoutoveralllocallyintegrablecontrolsu:[0,+∞),isobviouslypositivedefinite.Itmayoccurthatforsomex0∈IRn,V(x0)=+∞;thisisthecasewhennocontrolmakestheintegralin(8)finite. AkeypropertyofVisthatitisaconvexfunctiononnIR.Thisisaconsequenceofageneralprinciplethatvaluefunctionsforconvexoptimizationproblemsareconvex,seeRockafellar[13].Itcanalsobeverifieddirectly. Asaconsequenceofconvexity,thelevelsetsofV,being{x∈IRn|V(x)≤r},areconvexandbounded,foreachr∈IR.Thiscaninturnbeusedtoshowthatanyprocess(¯x(·),u¯(·))forwhichtheintegralin(8)isfinitesatisfiesx¯(t)→0ast→∞.Finally,theset domV={x∈IRn|V(x)<+∞} isopen.Thiscanbearguedfromcontinuityofrat0andcontrollabilityof(A,B). Theorem3.1:(differentiabilityofV).Thevaluefunc-tionVisdifferentiableateverypointofdomVand∇V(xi)→+∞foranysequenceofpointsxi∈domVconvergingtoapointnotindomV.Thegradient∇ViscontinuousondomV.ThefunctionVisstrictlyconvex.Theproof,whichwedonotincludehere,reliesonthedescriptionofVasaconvexconjugateofavaluefunctionofacertaindualoptimalcontrolproblem.SuchdescriptionispossiblethroughgeneraldualityresultsinGoebel[5](foraconferenceversion,see[8]).Wenotethatsomeresultsonsmoothnessofvaluefunctionsinsimilarsettingsexist,forexampleBenvenisteandScheinkman[2],andGotaandMontrucchio[9],Rockafellar[12],andBarbu[1],butdonotapplyhere.Forapplicationsofgeneraldualityresultstoregularityofvaluefunctionsforfinitehorizonproblems,seeGoebel[7]. Corollary3.2:(optimalfeedbackforLCR).Themap-RkdefinedbypingFLCR:domV→I FLCR(x)=∇s(−B∗∇V(x)) istheoptimalfeedbackforLCR.Thatis,foranyx0∈ domV,theprocess(¯x(·),w¯(·))withx¯(·)beingasolutionto ˙(t)=Ax¯(t)+Bw¯(t)andw¯(t)=FLCR(¯x(t)),x¯(0)=x0,x isoptimalforLCR(x0). Weoutlinethestandardargument.ThevaluefunctionVsatisfiestheHamilton-Jacobiequation H(x,−∇V(x))=0forallx∈domV, (9) T∗ whereH(x,p)=pTAx−12xQx+s(Bp).Fromthedefinitionofrintermsofsin(7),onecanseethat (c)(d)Thesetdomr={w∈IRn|r(w)<+∞}neednotequalIRn.Infactr(w)=+∞wheneverw∈rgeσ(theclosureoftherangeofσ).Infinitevaluesofrintroduceacontrolconstrainttothelinear-convexregulator–feasiblecontrolsmustsatisfyw(t)∈domr.Forthestandardsaturation,asexpected,thismeansw(t)∈domr=rgeσ=[−1,1].Ingeneralrgeσ⊂domr.Fordetails,seethebeginningofSection24inRockafellar[11]. Finally,westressthatseveral”flatsegments”inσdonotleadtodiscontinuityinr(thelatterisaconvexfunction,andassuch,continuousontheinteriorofthesetwhereitisfinite).Suchsegmentsdoleadto”corners”inr,thatis,pointswhererisnotdifferentiable.Anexampleissketchedbelow,withσandrgivenon(a),(b),respectively. (a)(b)Tosummarizethissection,westatethefollowing.Lemma2.5:(saturationandconvexfunctions).GivenasaturationfunctionσasinAssumption(A2),thereexistconvexfunctionss:IRk→[0,+∞)andr:IRk→[0,+∞]relatedtoeachotherby(7)andsuchthat: (i)sisdifferentiable,∇s=σ,s(0)=0,andsisstrictly convexonsomeneighborhoodof0; (ii)rispositivedefiniteandonsomeneighborhoodof0, ithasfinitevalues. r(∇s(u))=∇s(u)Tu−s(u). 5519 This,andtheHamilton-Jacobiequation,showthatd1V(¯x(t))=−x¯(t)TQx¯(t)−r(w¯(t)),(10)dt2 whichimpliesboththatx¯(t)→0ast→0andthatx(·)isoptimalforLCR(x0).Thelatterfollowsfromintegrating(10)on[0,+∞)andcomparingtheresultwiththedefinitionofV(x0).Additionally,thisshowsthattheoptimalcontrolw¯(·)iscontinuousandw¯(t)→0ast→∞. IV.PROOFOFTHEMAINRESULT Asmaybenowexpected,justificationofTheorem1.1hingesupontranslatingtheoptimalfeedbackforLCRtoastabilizingfeedbackforthesaturatedsystem.First,wenotethatthesetwherethevaluefunctionVisfinite,domV,isequaltoX0.This,andtheresultsofSectionIII,letusproveTheorem1.1. Proof:Giventhesystem(2)andamatrixQasassumed,letVbethevaluefunction(8)withtheconvexfunctionrgivenby(7)andssuchthats(0)=0,∇s=σ.Corollary3.2andthediscussionfollowingitshowthatforanypointx0∈domV=X0,anysolutionx(·)to x˙(t)=Ax(t)+BFLCR(x(t)) withx(0)=x0satisfies(4).Asbyconstruction∇s=σ, RkdefinedbythemappingF:X0→I F(x)=−B∗∇V(x) (11) dynamicsprovideddirectlybythesaturatedsystem, doesnotleadtoaconvexproblemandisunlikelytoyieldaregularfeedbackorevenaregularvaluefunction(whichneedsnotbeconvexinsuchacase).Toconclude,wepointoutthatthecomponentwisestruc-tureofσasinassumption(A2)isnotnecessaryforourmainresult.Infact,theconclusionsofTheorem1.1holdforanyσsuchthatfunctionss,rasdescribedinLemma2.5exist.Anexampleofsuchσ(whichneednothavethecomponentwisestructure)istheprojectionPContoanonempty,closed,andconvexsetC.WhenCistheunitballinIRk,PCisanidentityforpointsinC,andaradialprojectionontotheunitsphereforpointsoutsideit(thatis,PC(u)=u/u).Thens(u)=12 2uforu≤1,u−1/2foru>1.Notethatthississtrictlyconvexaround0,infactthispropertyispresentwhenever0isintheinteriorofC.Finally, 1w2forw∈C,2r(w)= +∞forw∈C. REFERENCES [1]V.Barbu.ConvexcontrolproblemsandHamiltoniansystemson infiniteintervals.SIAMJ.ControlOptim.,16(6):895–911,1978.[2]L.M.BenvenisteandJ.A.Scheinkman.Onthedifferentiabilityof thevaluefunctionindynamicmodelsofeconomics.Econometrica,47:727–732,1979. [3]S.BoydandL.Vandenberghe.ConvexOptimization.Cambridge UniversityPress,2004.availableonline. [4]F.H.Clarke,Y.S.Ledyaev,L.Rifford,andR.J.Stern.Feedback stabilizationandlyapunovfunctions.SIAMJ.ControlOptim.,39(1):25–48,2000. [5]R.Goebel.Dualityanduniquenessofconvexsolutionstostationary Hamilton-Jacobiequations.TransAmer.Math.Soc.inpress. [6]R.Goebel.Stabilizingalinearsystemswithsaturationthrough optimalcontrol.IEEETrans.Automat.Contr.accepted. [7]R.Goebel.Hamiltoniandynamicalsystemsforconvexproblemsof optimalcontrol:implicationsforthevaluefunction.InProceedingsofthe41stIEEEConferenceonDecisionandControl,LasVegas,2002,pages728–732,2002. [8]R.Goebel.StationaryHamilton-Jacobiequationsforconvexcontrol problems-uniquenessanddualityofsolutions.InOptimalControl,Stabilization,andNonsmoothAnalysis,LectureNotesinControlandInformationSciences.Springer-Verlag,Heidelberg,2004. [9]M.L.GotaandL.Montrucchio.OnLipschitzcontinuityofpolicy functionsincontinuous-timeoptimalgrowthmodels.Econom.Theory,14:479–488,1999. [10]T.HuandZ.Lin.ControlSystemswithActuatorSaturation. Birkhauser,2001. [11]R.T.Rockafellar.ConvexAnalysis.PrincetonUniversityPress,1970.[12]R.T.Rockafellar.SaddlepointsofHamiltoniansystemsinconvex problemsofLagrange.JournalofOptimizationTheoreyandAppli-cations,12(4),1973. [13]R.T.Rockafellar.ConjugateDualityandOptimization.Number16 inCBMS-NSFRegionalConferenceSeriesinAppliedMathematics.SIAM,1974. [14]A.Saberi,Z.Lin,andA.R.Teel.Controloflinearsystemswith saturatingactuators.IEEETrans.Automat.Control,41(3):368–378,1996. [15]E.D.SontagandH.J.Sussman.Nonlinearoutputfeedbackdesign forlinearsystemswithsaturatingcontrols.InProc.29IEEEConf.DecisionandControl,Honolulu,1990,pages3414–3416,1990.[16]E.D.Sontag,H.J.Sussmann,andY.D.Yang.Ageneralresultonthe stabilizationoflinearsystemsusingboundedcontrols.IEEETrans.Automat.Control,39(12):2411–2424,1994. [17]A.A.Stoorvogel,A.Saberi,andG.Shi.Propertiesofrecoverable regionandsemi-globalstabilizationinrecoverableregionforlinearsystemssubjecttoconstraints.Autmomatica,40(9):1481–1494,2004. satisfiestheconclusionsofTheorem1.1.ContinuitywasestablishedinTheorem3.1. V.COMMENTSANDEXTENSIONS WenowmakeseveralcommentsregardingTheorem1.1,andtheconstructionsleadinguptoit. (i)ThestabilizingfeedbackFforthesaturatedsystem isnotthesameastheoptimalfeedbackforLCR.However,byconstruction,trajectoriesofthesaturatedsystemwithu(t)=F(x(t))agreewithoptimaltrajectoriesforthelinear-convexregulator. (ii)TheoptimalfeedbackFLCRforthelinear-convex regulatorisrelatedtothestabilizingfeedbackFbyFLCR(x)=σ(F(x)),andwhenσisinvertible,F(x)=σ−1(FLCR(x)).Whenσisnotinvertible,therelationshipF(x)=σ−1(FLCR(x))isnotvalidevenintheset-valuedsense. (iii)TheconstructionofFdoesnotrelyonconsidering σ−1,notevenonasubsetofrgeσonwhichσisinvertible(thiswas,forexample,theapproachof[15]).Furthermore,wedonotrequestthatσbeLipschitz,differentiableat0,orbounded. (iv)LCRisaconvexoptimizationproblem.Fromthe numericalcomputationviewpoint,suchproblemshavemanyadvantagesovertheirnonconvexcounterparts,seethebookbyBoydandVandenberghe[3].Aseeminglymoreobviouschoiceofanauxiliarycontrolproblem,withaconvexorevenquadraticcostandthe 5520 因篇幅问题不能全部显示,请点此查看更多更全内容