XJP´ƒê,a´ê§@o7½kpa,,dEuler½nŒ•§aϕ(m)≡1(modm),m•ƒê,duP´ƒê§ϕ(p)=p−1¤±ap−1≡1(modp)Kap−1−1≡0(modp)@op|ap−1−11.10y²µ
(⇐)dŸêÓ{ª§éu?Ûêx5`§p•ƒê§k±e½n¤áxp−1≡(x−1)(x−2)···(x−(p−1))(modp)x=0ž§=
(⇒)(‡y)bp´Üê§K∃a,b∈Z,0a|[(p−1)!+1]⇒a|1=[(p−1)!+1]−(p−1)!⇒a=1gñ§ddŒ•p•ƒê1.11y²XJp´ƒê§dWilson½nŒ•(p−j)!=(p−1)(p−2)···(p−j)(p−j−1)!≡(−1)(−2)···(−j)(p−j−1)!≡(−1)j∗j!(p−1−j)!(modp)p−1)!j⇒j!((p−j−1)!≡(−1)(modp)jj⇒Cp−1≡(−1)(modp)1.13y²m,i=1,2,···,k,KPMi=mix≡ki=1MiMiai(modm)()w,´Ó{ª|),Ù¥MiMi≡1(modmi),i=1,2,···,k.ey•˜5µex1≡x2´·ÜÓ{ª|?¿ü‡ê,Kx1≡x2(modmi),i=1,2,···,k,Ï(mi,mj)=1,u´x1≡x2(modm),Ó{ª|)•k() 因篇幅问题不能全部显示,请点此查看更多更全内容 查看全文
XJp´ƒê§dWilson½nŒ•
(p−j)!=(p−1)(p−2)···(p−j)(p−j−1)!≡(−1)(−2)···(−j)(p−j−1)!≡(−1)j∗j!(p−1−j)!(modp)
p−1)!j
⇒j!((p−j−1)!≡(−1)(modp)
jj⇒Cp−1≡(−1)(modp)1.13y²
m
,i=1,2,···,k,KPMi=mi
x≡
ki=1
MiMiai(modm)()
w,´Ó{ª|),Ù¥MiMi≡1(modmi),i=1,2,···,k.
ey•˜5µ
ex1≡x2´·ÜÓ{ª|?¿ü‡ê,Kx1≡x2(modmi),i=1,2,···,k,
Ï(mi,mj)=1,u´x1≡x2(modm),Ó{ª|)•k()
因篇幅问题不能全部显示,请点此查看更多更全内容