您的当前位置:首页正文

初中七年级数学第一学期期末调研

来源:画鸵萌宠网
七 年 级 第 一 学 期 期 末 调 研

数 学

学校 班级 姓名 成绩 一、选择题(每小题3分,共30分)第1~10题均有四个选项,符合题意的选项只有一个. 1. 5的相反数是

( )

11A. B. C.5 D.5

552. 2017年10月18日上午9时,中国共产党第十九次全国代表大会在京开幕.“十九大”最受新闻网站

关注.据统计,关键词“十九大”在1.3万个网站中产生数据174,000条.将174,000用科学记数法表示应 为 ( )

A.17.4105 B.1.74105 C.17.4104 D.0.174106 3. 下列各式中,不相等的是 ...

3 ( )

A.(-3)2和-32 B.(-3)2和32 C.(-2)3和-23 D.2和23 4. 下列是一元一次方程的是

( )

A.x22x30 B.2xy5 C.5. 如图,下列结论正确的是

A. cab C. |a||b|

B.

x11 D.x10 2x

( )

11

 bcD. abc0

a-1

0

b1

c

( )

6. 下列等式变形正确的是

3A. 若3x5,则x

5C. 若5x62x8,则5x2x86 xx11,则2x3(x1)1 32D. 若3(x1)2x1,则3x32x1

B. 若

7. 下列结论正确的是

B.

( )

A. 3ab2和b2a是同类项 C. a比a大

π不是单项式 2D. 2是方程2x14的解

8. 将一副三角板按如图所示位置摆放,其中与一定互余的是 ( )

A. B. C. D.

9. 已知点A,B,C在同一条直线上,若线段AB=3,BC=2,AC=1,则下列判断正确的是 ( )

A. 点A在线段BC上 B. 点B 在线段AC上 C. 点C在线段AB上 D. 点A在线段CB的延长线上

10. 由m个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,

则m能取到的最大值是 ( )

A. 6 B. 5 C. 4 D. 3

从正面看

从上面看

二、填空题(每小题2分,共16分) 11. 计算:48°37'+53°35'=__________.

12. 小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a元,圆珠笔的单价为b元则小何共花

费 元.(用含a,b的代数式表示) 13.已知|a2|(b3)20,则ba= .

14. 北京西站和北京南站是北京的两个铁路客运中心,如图,A,B,C分别表示天安门、北京西站、北京南站,

北经测量,北京西站在天安门的南偏西77°方向,北京南站在天安门的南偏西18°方向.则∠BAC= °.

ABABCC15. 若2是关于x的一元一次方程的解,则a = ________. 16. 规定图形

bca表示运算abc,图形

xw表示运算xzyw. yz则123 +

45=________________(直接写出答案). 7617. 线段AB=6,点C在直线AB上,BC=4,则AC的长度为 .

18. 在某多媒体电子杂志的某一期上刊登了“正方形雪花图案的形成”的演示案例:作一个正方形,设每边长

为4a,将每边四等分,作一凸一凹的两个边长为a的小正方形,得到图形如图(2)所示,称为第一次

变化,再对图(2)的每个边做相同的变化, 得到图形如图(3),称为第二次变化.如此 连续作几次,便可得到一个绚丽多彩的雪花 图案.如不断发展下去到第n次变化时,图 形的面积是否会变化,________(填写“会” 或者“不会”),图形的周长为 .

(1)(2)第一次变化(3)第二次变化三、解答题(本题共54分,第19,20题每题6分,第21题4分,第22~25题每题6分,第26,27题

每题7分) 19.计算:

21(1)86;

21(2)1429.

320.解方程:

x71x1. 3221.已知3a7b=3,求代数式2(2ab1)5(a4b)3b的值.

(1) 3(2x1)15; (2)

22. 作图题:

如图,已知点A,点B,直线l及l上一点M.

(1)连接MA,并在直线l上作出一点N,使得点N在点M的左边, 且满足MN=MA;

(2)请在直线l上确定一点O,使点O到点A与点O到点B的距 离之和最短,并写出画图的依据.

23. 几何计算:

如图,已知∠AOB=40°,∠BOC=3∠AOB,OD平分∠AOC,求∠COD的度数. 解:因为∠BOC=3∠AOB,∠AOB=40°

所以∠BOC=__________°

BDBMlABAMl所以∠AOC=__________ + _________ =__________° + __________° =__________° 因为OD平分∠AOC 所以∠COD=

1__________=__________° 2AOC24. 如图1, 线段AB=10,点C, E, F在线段AB上.

AECFB(1)如图2, 当点E, 点F是线段AC和线段BC的中点时, 求线段EF的长;

AE图1CFB(2)当点E, 点F是线段AB和线段BC的中点时,请你 写出线段EF与线段AC之间的数量关系并简要说明理由.

25. 先阅读,然后答题.

A图2CB(备用图)阿基米德测皇冠的故事

叙古拉国王艾希罗交给金匠一块黄金,让他做一顶王冠。王冠做成后,国王拿在手里觉得有点轻。他怀疑金匠掺了假,可是金匠以脑袋担保说没有,并当面拿秤来称,结果与原来的金块一样重。国王还是有些怀疑,可他又拿不出证据,于是把阿基米德叫来,要他来解决这个难题。 回家后,阿基米德闭门谢客,冥思苦想,但百思不得其解。 一天,他的夫人逼他洗澡。当他跳入池中时,水从池中溢了出来。阿基米德听到那哗哗哗的流水声,灵感一下子冒了出来。他从池中跳出来,连衣服都没穿,就冲到街上,高喊着:\"优勒加!优勒加!(意为发现了)\"。夫人这回可真着急了,嘴里嘟囔着\"真疯了,真疯了\",便随后追了出去。街上的人不知发生了什么事,也都跟在后面追着看。 原来,阿基米德由澡盆溢水找到了解决王冠问题的办法:相同质量的相同物质泡在水里,溢出的水的体积应该相同。如果把王冠放到水了,溢出的水的体积应该与相同质量的金块的体积相同,否则王冠里肯定掺有假。阿基为德跑到王宫后立即找来一盆水,又找来同样重量的一块黄金,一块白银,分两次泡进盆里,白银溢出的水比黄金溢出的几乎要多一倍,然后他又把王冠和金块分别泡进水盆里,王冠溢出的水比金块多,显然王冠的质量不等于金块的质量,王冠里肯定掺了假。在铁的事实面前,金匠不得不低头承认,王冠里确实掺了白银。烦人的王冠之谜终于解开了。

小明受阿基米德测皇冠的故事的启发,想要做以下的一个探究:

小明准备了一个长方体的无盖容器和A,B两种型号的钢球若干. 先往容器里加入一定量的水,如图,水高度为30mm,水足以淹没所有的钢球.

探究一:小明做了两次实验,先放入3个A型号钢球,水面的高度涨到36mm;把3个A型号钢球捞出,再放入2个B型号钢球,水面的高度恰好也涨到36mm.

由此可知A型号与B型号钢球的体积比为____________; 探究二:小明把之前的钢球全部捞出,然后再放入A型号与B型号 钢球共10个后,水面高度涨到57mm,问放入水中的A型号与B型号钢 球各几个?

26. 对于任意四个有理数a,b,c,d,可以组成两个有理数对(a,b)与(c,d).我们规定:

(a,b)★(c,d)=bc-ad. 例如:(1,2)★(3,4)=2×3-1×4=2. 根据上述规定解决下列问题:

(1)有理数对(2,-3)★(3,-2)= ;

(2)若有理数对(-3,2x-1)★(1,x+1)=7,则x= ;

(3)当满足等式(-3,2x-1)★(k,x+k)=5+2k的x是整数时,求整数k的值.

60mm30mm27.如图1,在数轴上A,B两点对应的数分别是6, -6,DCE90(C与O重合,D点在数轴的正半轴上)

(1)如图1,若CF 平分ACE,则AOF_________;

(2)如图2,将DCE沿数轴的正半轴向右平移t(0①当t=1时,=_______;

②猜想BCE和的数量关系,并证明;

(3)如图3,开始D1C1E1与DCE重合,将DCE沿数轴的正半轴向右平移t(0EFD23AEFD1C23AB-3-2-1O(C)1B-3-2-1O图1FE1EC1F1-3-2-1OD

图2

B12C3AD1图3

数学参考答案

一、选择题: 题号 答案 二、填空题 11. 10212; 16. 8; 三、解答题

19.(1) 40 (2)-4 20.(1)x=3 (2)x23… 21. 11

22. 作图依据是:两点之间线段最短. .

224. 解:(1)EF5

(2) EFANBMl1 C 2 B 3 A 4 D 5 B 6 D 7 A 8 C 9 C 10 B 12. 4a10b; 17.2或10;

13. 9;

14. 59;

15. 1;

18.不会;2n3a.

AOBMl图1图21111ABCB(ABCB)AC 222225.探究一:2:3;

探究二:放入水中的A型号钢球3个,B型号钢球7个 26. 解:(1)﹣5(2)1

(3)k=1,﹣1,﹣2,﹣4

27.解:(1)45;(2)①当t=1时,____30_

②猜想:BCE=2 (3) t

2. 3

因篇幅问题不能全部显示,请点此查看更多更全内容

Top