您好,欢迎来到画鸵萌宠网。
搜索
您的当前位置:首页A Formal Definition of Intelligence for Artificial Systems

A Formal Definition of Intelligence for Artificial Systems

来源:画鸵萌宠网
AFormalDefinitionofIntelligenceforArtificialSystems

ShaneLeggandMarcusHutter

IDSIA,Galleria2,Manno-Lugano6928,Switzerland

{shane,marcus}@idsia.ch

Afundamentaldifficultyinartificialintelligenceisthatnobodyreallyknowswhatintelli-genceis,especiallyforsystemswithsenses,environments,motivationsandcognitivecapacitieswhichareverydifferenttoourown.Inourworkwetakeamainstreaminformalperspectiveonintelligenceandformaliseandgeneralisethisusingthereinforcementlearningframeworkandal-gorithmiccomplexitytheory.Theresultingformaldefinitionofintelligencehasmanyinterestingpropertiesandhasreceivedattentioninboththeacademic[4,5]andpopularpress[2,1].

Althoughthereisnostrictconsensusamongexpertsoverthedefinitionofintelligenceforhu-mans,mostdefinitionssharemanykeyfeatures.Inallcases,intelligenceisapropertyofanentity,whichwewillcalltheagent,thatinteractswithanexternalproblemorsituation,whichwewillcalltheenvironment.Anagent’sintelligenceistypicallyrelatedtoitsabilitytosucceedwithre-specttooneormoreobjectives,whichwewillcallthegoal.Theemphasisonlearning,adaptationandflexibilitycommontomanydefinitionsimpliesthattheenvironmentisnotfullyknowntotheagent.Thustrueintelligencerequirestheabilitytodealwithawiderangeofpossibilities,notjustafewspecificsituations.Puttingthesethingstogethergivesusourinformaldefinition:Intelligencemeasuresanagent’sgeneralabilitytoachievegoalsinawiderangeofenvironments.Weareconfidentthatthisdefinitioncapturestheessenceofmanycommonperspectivesonintelligence.Italsodescribeswhatwewouldliketoachieveinmachines:Averygeneralcapacitytoadaptandperformwellinawiderangeofsituations.

Toformalisethiswecombinetheextremelyflexiblereinforcementlearningframeworkwithalgorithmiccomplexitytheory.Inreinforcementlearningtheagentsendsitsactionstotheenvi-ronmentandreceivesobservationsandrewardsback.Theagenttriestomaximisetheamountofrewarditreceivesbylearningaboutthestructureoftheenvironmentandthegoalsitneedstoac-complishinordertoreceiverewards.Todenotesymbolsbeingsentwewillusethelowercasevari-ablenameso,randaforobservations,rewardsandactionsrespectively.Theprocessofinteractionproducesanincreasinghistoryofobservations,rewardsandactions,o1r1a1o2r2a2o3r3a3o4....Theagentissimplyafunction,denotedbyπ,whichisaprobabilitymeasureoveractionscon-ditionedonthecurrenthistory,forexample,π(a3|o1r1a1o2r2).Howtheagentgeneratesthisdistributionoveractionsisleftcompletelyopen,forexample,agentsarenotrequiredtobeTuringcomputable.

Theenvironment,denotedµ,issimilarlydefined:∀k∈Ntheprobabilityofokrk,giventhecurrenthistoryisµ(okrk|o1r1a1o2r2a2...ok−1rk−1ak−1).Aswedesireanextremelygeneraldefinitionofintelligenceforarbitrarysystems,ourspaceofenvironmentsshouldbeaslargeaspossible.Anobviouschoiceisthespaceofallprobabilitymeasures,howeverthiscausesseriousproblemsaswecannotevendescribesomeofthesemeasuresinafiniteway.Thesolutionistorequirethemeasurestobecomputable.Thisallowsforaninfinitespaceofpossibleenvironmentswithnoboundontheircomplexity.Italsopermitsenvironmentswhicharenon-deterministicasitisonlytheirprobabilitydistributionswhichneedtobecomputable.Additionallyweboundthe󰀂∞πtotalrewardtobe1toensurethatthefuturevalueVµ:=Ei=1riisfinite.Thisspace,denotedE,appearstobethelargestusefulspaceofenvironments.

Wewanttocomputethegeneralperformanceofanagentinunknownenvironments.Asthereareaninfinitenumberofenvironments,wecannotsimplytakeanexpectedvaluewithrespecttoauniformdistribution—wemustweightsomeenvironmentsmoreheavilythanothers.Ifweconsidertheagent’sperspectiveontheproblem,itisthesameasasking:Givenseveraldifferenthypotheseswhichareconsistentwiththeobservations,whichhypothesisshouldbeconsideredthemostlikely?ThisisafundamentalproblemininductiveinferenceforwhichthestandardsolutionistoinvokeOccam’srazor:Givenmultiplehypotheseswhichareconsistentwiththedata,the

simplestshouldbepreferred.Asthisisgenerallyconsideredthemostintelligentthingtodo,weshouldtestagentsinsuchawaythattheyare,atleastonaverage,rewardedforcorrectlyapplyingOccam’srazor.Thismeansthatouraprioridistributionoverenvironmentsshouldbeweightedtowardssimplerenvironments.

Aseachenvironmentisdescribedbyacomputablemeasure,wecanmeasurethecomplexityoftheseinthestandardwaybyconsideringtheirKolmogorovcomplexity.Specifically,ifUisaprefixuniversalTuringmachinethentheKolmogorovcomplexityofanenvironmentµisthelengthoftheshortestprogramonUthatcomputesµ,formallyK(µ):=minp{l(p):U(p)=µ}.Wecannowdefinetheuniversalintelligenceofanagentπtosimplybeitsexpectedperformance,

󰀁

π

Υ(π):=2−K(µ)Vµ.

µ∈E

Itisclearbyconstructionthatuniversalintelligencemeasuresthegeneralabilityofanagent

toperformwellinaverywiderangeofenvironments,asrequiredbyourinformaldefinitionofintelligencegivenearlier.Thedefinitionplacesnorestrictionsontheinternalworkingsoftheagent;itonlyrequiresthattheagentiscapableofgeneratingoutputandreceivinginputwhichincludesarewardsignal.UniversalintelligencealsoreflectsOccam’srazorinanaturalway;likestandardintelligencetestsforhumanswhichdefinethecorrectanswertoaquestiontobethesimplestconsistentwiththegiveninformation.

π

foranumberofbasicenvironments,suchassmallMDPs,andagentsByconsideringVµ

withsimplebutverygeneraloptimisationstrategies,itisclearthatΥcorrectlyorderstherelativeintelligenceoftheseagentsinanaturalway.Ifweconsiderahighlyspecialisedagent,forexampleIBM’sDeepBluechesssupercomputer,thenwecanseethatthisagentwillbeineffectiveoutsideofoneveryspecificenvironment,andthuswouldhavealowuniversalintelligencevalue.Thisisconsistentwithourviewofintelligenceasbeingahighlyadaptableandgeneralability.

AveryhighvalueofΥwouldimplythatanagentisabletoperformwellinmanyenviron-ments.Suchamachinewouldobviouslybeoflargepracticalsignificance.ThemaximalagentwithrespecttoΥisthetheoreticalAIXIagentwhichhasbeenshowntohavemanystrongoptimalityproperties,includingbeingself-optimisinginallenvironmentsinwhichthisisatallpossibleforageneralagent[3].Suchresultsconfirmthefactthatagentswithhighuniversalintelligenceareverypowerfulandadaptable.

UniversalintelligencespanssimpleadaptiveagentsrightuptosuperintelligentagentslikeAIXI,unlikethepass-failTuringtestwhichisusefulonlyforagentswithnearhumanintelligence.Furthermore,theTuringtestcannotbefullyformalisedasitisbasedonsubjectivejudgements.PerhapsanevenbiggerproblemisthattheTuringtestishighlyanthropocentric,indeedmanyhavesuggestedthatitisreallyatestofhumannessratherthanintelligence.Universalintelligencedoesnothavetheseproblemsasitisformallyspecifiedintermsofthemorefundamentalconceptofcomplexity.

References[1]C.Fi´evet.Mesurerl’intelligenced’unemachine.InLeMondedel’intelligence,volume1,

pages42–45,Paris,November2005.Mondeopublishing.

[2]D.Graham-Rowe.Spottingthebotswithbrains.InNewScientistmagazine,volume2512,

page27,13August2005.

[3]M.Hutter.UniversalArtificialIntelligence:SequentialDecisionsbasedonAlgorithmicProb-ability.Springer,Berlin,2004.300pages,http://www.idsia.ch/∼marcus/ai/uaibook.htm.[4]S.LeggandM.Hutter.Auniversalmeasureofintelligenceforartificialagents.InProc.21st

InternationalJointConf.onArtificialIntelligence(IJCAI-2005),Edinburgh,2005.

[5]S.LeggandM.Hutter.Aformalmeasureofmachineintelligence.InProc.Annualmachine

learningconferenceofBelgiumandTheNetherlands(Benelearn-2006),Ghent,2006.

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- huatuo8.com 版权所有 湘ICP备2023022238号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务