文科数学
考试时间:____分钟
题型 得分 单选题 填空题 简答题 总分 单选题 (本大题共12小题,每小题____分,共____分。)
1.i(2+3i)= A. 3-2i B. 3+2i C. -3-2i D. -3+2i
2.已知集合A={1,3,5,7}. B={2,3,4,5}. 则A∩B= A. {3} B. {5} C. {3,5}
D. {1,2,3,4,5,7}
3.函数f(x)=e ²-e-x/x ²的图像大致为 A.
B.
C.
D.
4.已知向量a,b满足∣a∣=1,ab=1,则a(2ab)= A. 4 B. 3 C. 2 D. 0
5.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为
A. 0.6 B. 0.5 C. 0.4 D. 0.3
A. y=±×
B. y=±×
C. y=±
D. y=±
7.在∆ABC中,cos=,BC=1, AC=5,则AB=.
A.
B.
C.
D.
8.为计算S=1…,设计了右侧的程序框图,则在空白框中应填入
A. i=i+1 B. i=i+2 C. i=i+3 D. i=i+4
9.在正方体ABCD-A₁B₁C₁D₁中,E为棱CC₁的中点,则异面直线AE与CD所成角的正切值为
A.
B.
C.
D.
10.若(×)=cos×-sin×在[0.a]减函数,则的最大值是
A.
B.
C.
D. π
11.已知F₁, F₂是椭圆C的两个焦点,P是C上的一点,若PF₁⊥PF₂,且∠PF₂=60°,则C的离心率为
A. 1-
B. 2-
C.
D.
12.已知(×)是定义域为(-∞.+∞)的奇函数,满足(1-×)=(1+×).若(1)=2,则(1)+(2)+(3)+…+(50)= A. -50 B. 0 C. 2 D. 50
填空题 (本大题共4小题,每小题____分,共____分。)
13.曲线y=2在点(1,0)处的切线方程为_______。
14.若x,y满足约束条件则z=x+y的最大值为____。
15.已知=,则=______
16.已经圆锥的顶点为S,母线SA,SB互相垂直,SA与圆锥底面所成角为30°,若△SAB的面积为8,则该圆锥的体积为________。
简答题(综合题) (本大题共7小题,每小题____分,共____分。)
记Sn为等差数列{an}的前n项和,已经a1=-7,S3=-15。 17.求{an}的通项公式; 18.求Sn,并求Sn的最小值。
下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图。
为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型。根据2000年至2016年的数据(时间变量t的值依次为1,2……17)建立模型①:=-30.4+13.5t;根据2010年至2016年的数据,(时间变量t的依次为1,2……7)建立模型②:=99+17.5t。
18.分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; 19.你认为用哪个模型得到的预测值更可靠?并说明理由。
如图,在三棱锥P-ABC中,AB=BC=2,PA=PB=PC=AC=4,O为AC的中点。
20.证明PO平面ABC;
21.若点M在棱BC上,且MC=2MB,求点C到平面POM的距离。
设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,|AB |=8。 22.求l的方程;
23.求过点A,B且与C的准线相切的圆的方程。
已知道函数(x)=x3-(x2+x+1)。
24.若=3,求(x)的单调区间; 25.证明:(x)只有一个零点。 [选修4-4:坐标系与参数方程]
在直角坐标系xOy中,曲线C的参数方程为参数)。
26.求C和l的直角坐标方程;
,(θ为参数),直线l的参数方程为(l为
27.若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率。
[选修4-5:不等式选讲](10分) 设函数f(x)=5-∣x+∣-∣x-2∣。 28.当a=1时,求不等式(x)≥0的解集; 29.若(x)≤1,求a的取值范围。
答案
单选题
1. D 2. C 3. B 4. B 5. D 6. A 7. A 8. B 9. C 10. C 11. D 12. C 填空题 13.
14.
15.
16.
简答题 17.
18.
19.
20.
21.
22.
23.
24. 【答案】
25.
26.
27.
28. 【答案】
29.
30.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuo8.com 版权所有 湘ICP备2023022238号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务